

Ray Markov Random Fields for Image-Based 3D Modeling: Model and Efficient Inference

Core Ideas

* Optimization-based multi-view 3D reconstruction based on the idea of inversing the ray tracing process. * Uses MRF to model the multi-view image-formation process, where occlusion is accurately modeled. * Each ray creates a clique, consisting of 100-1000 voxels the ray passes through.

* The RayMRF clique proposed is unusual because it constitutes a large number of random variables(voxels). * Developed a highly efficient algorithm for 3D shape estimation based on loopy belief propagation and dynamic programming --- compact belief propagation.

Shubao Liu and David B. Cooper

LEMS, Brown University sbliu@lems.brown.edu, cooper@lems.brown.edu

system diagram

Compact Belief Propagation

Need to compute: $X^* = \arg_X \min E$

Loopy Belief Propagation:

In general:

 $\min_{x_k \in \mathcal{X}(E_m) \setminus \{x_i\}} \{E_m(\mathcal{X}(E_m)) +$ $m_{E_m \to x_i}(x_i) =$ $m_{x_k \to E_m}(x_k)$

a **small** optimization problem!

BIG OBSTACLE:

For ray clique, the **small** combinational optimization is LARGE!

2^(1000) combinations for each ray-clique!

SOLUTION:

Explore the **compactness** of the clique energy! Go back to the toy example: $E_R(x_0, x_1, x_2, x_3)$ (Note: observe the reduction in each color box below.)

 $m_{R \to \mathsf{x}_1}(x_1 = 0)$ $E_R(x_0, 0, x_2, x_3) +$ min $m_{x_0 \to R}(x_0) + m_{x_2 \to R}(x_2) + m_{x_3 \to R}(x_3)$ x_0, x_2, x_3

ſ	$E_R(0,0,0,0) + m_{x_0 \to R}(0) + m_{x_2 \to R}(0) + m$
	$E_R(0,0,0,1) + m_{x_0 \to R}(0) + m_{x_2 \to R}(0) + m_{x_2$
	$E_R(0,0,1,0) + m_{x_0 \to R}(0) + m_{x_2 \to R}(1) + m_{x_2 \to R}(1) + m_{x_0 \to R}(1) + m_{x_0$
J	$E_R(0,0,1,1) + m_{x_0 \to R}(0) + m_{x_2 \to R}(1) + m_{x_0 \to R}(1) + m_{x_0$
١	$E_R(1,0,0,0) + m_{x_0 \to R}(1) + m_{x_2 \to R}(0) + m_{x_0 \to R}(0) + m_{x_0$
	$E_R(1,0,0,1) + m_{x_0 \to R}(1) + m_{x_2 \to R}(0) + m_{x_2$
	$E_R(1,0,1,0) + m_{x_0 \to R}(1) + m_{x_2 \to R}(1) + m_{x_2$
	$E_R(1,0,1,1) + m_{x_0 \to R}(1) + m_{x_2 \to R}(1) + m_{x_2$
$\left(\right)$	$E_R(0,0,0,0) + m_{x_0 \to R}(0) + m_{x_2 \to R}(0) + m_{x_3 \to R}(0) + m_{x_3$
	$F_{r}(0, 0, 0, 1) + m = r(0) + m = r(0) + m$

- min	$E_R(0,0,0,1) + m_{x_0 \to R}(0) + m_{x_2 \to R}(0) + m_{x_3 \to R}(0) + m_{x_3$
— 11111	$E_R(0,0,1,\times) + m_{x_0 \to R}(0) + m_{x_2 \to R}(1) + \min\{$
	$E_R(1,0,\times,\times) + m_{x_0\to R}(1) + \min\{m_{x_2\to R}(0), m_{x_0\to R}(0), m_{x_0\to R}(0)\}$

reduced to 4 terms; In general: N terms. And these terms can be reused when computing the message sent from the ray-clique to the other voxels on the ray.

SUMMARY

* compact belief propagation = loopy belief propagation + dynamic programming.

* Reduces the computational cost from **exponential to linear**, where N is the number of random variables in the clique.

))	
$\langle ,, \times ;$	$\times, c_1, \times, \times, \times$
, imes;	$\times, \times, c_2, \times, \times$
, 1;	$\times, \times, \times, c_3, \times$
,0;	$ imes, imes, imes, imes, imes,c_g$

 $x_{3\to R}(1)$ $(2^{(4-1)}=8 \text{ terms})$ $h_{x_3 \to R}(0)$ In general: $h_{x_3 \to R}(1)$ $h_{x_3 \to R}(0)$ 2^(N-1) terms $h_{x_3 \to R}(1)$

 $[m_{x_3 \to R}(0), m_{x_3 \to R}(1)]$ $n_{x_3 \to R}(1) \} + \min \{ m_{x_3 \to R}(0), m_{x_3 \to R}(1) \}$

Experimental Results

* Accurate 3D reconstruction: Comparable to the state-ofthe-art with our current proof-of-concept implementation. * Photo-realistic

* **Very general**: Handles objects of arbitrary topology, any camera configuration, with background and/or foreground clutter.

* **Automatic**: Only needs the user to specify a bounding box (This can be relaxed in the future.) * Summary: A system for automatic reconstruction from hand-held camera or multiple stationary cameras.

Acknowledgement The support of National Science Foundation under grant IIS-0808718 is gratefully acknowledged.