
Distributed Volumetric Scene Geometry Reconstruction With a Network of

Distributed Smart Cameras

Shubao Liu † Kongbin Kang † Jean-Philippe Tarel ‡
David B. Cooper †

†Division of Engineering, Brown University, Providence, RI 02912
{sbliu, kk, cooper}@lems.brown.edu

‡Laboratoire central des Ponts et Chaussées (LCPR), Paris, France
jean-philippe.tarel@lcpc.fr

Abstract

Central to many problems in scene understanding based
on using a network of tens, hundreds or even thousands
of randomly distributed cameras with on-board processing
and wireless communication capability is the “efficient”
reconstruction of the 3D geometry structure in the scene.
What is meant by “efficient” reconstruction? In this pa-
per we investigate this from different aspects in the con-
text of visual sensor networks and offer a distributed recon-
struction algorithm roughly meeting the following goals: 1.
Close to achievable 3D reconstruction accuracy and robust-
ness; 2. Minimization of the processing time by adaptive
computing-job distribution among all the cameras in the
network and asynchronous parallel processing; 3. Com-
munication Optimization and minimization of the (battery-
stored) energy, by reducing and localizing the communica-
tions between cameras. A volumetric representation of the
scene is reconstructed with a shape from apparent contour
algorithm, which is suitable for distributed processing be-
cause it is essentially a local operation in terms of the in-
volved cameras, and apparent contours are robust to our-
door illumination conditions. Each camera processes its
own image and performs the computation for a small sub-
set of voxels, and updates the voxels through collaborat-
ing with its neighbor cameras. By exploring the structure
of the reconstruction algorithm, we design the minimum-
spanning-tree (MST) message passing protocol in order to
minimize the communication. Of interest is that the result-
ing system is an example of “swarm behavior”. 3D recon-
struction is illustrated using two real image sets, running
on a single computer. The iterative computations used in
the single processor experiment are exactly the same as
are those used in the network computations. Distributed
concepts and algorithms for network control and communi-
cation performance are theoretical designs and estimates.

1. An Overview of the System

1.1. Motivation

With the recent development of cheap and powerful vi-
sual sensors, wireless chips and embedded systems, cam-
eras have enough computing power to do some on-board
“smart” processing. These “smart cameras” can form a
network to collaboratively monitor, track and analyze the
scenes of interest. This area have drawn a lot of attention in
both academia and industry over the past years (see [1] [11]
and [13] for an overview). However compared with the ma-
turity and availability of the camera network hardware, the
software capable of fully utilizing the huge amount of visual
information is greatly under-developed. This has become
the bottleneck for the wide deployment of the smart camera
network (also called visual sensor network, VSN). There is
an obvious demand to synchronize the recent development
of vision algorithms with the development of the visual sen-
sor network hardware. Our paper presents a completely new
and natural approach to 3D reconstruction within a smart
camera network.

1.2. The Goal

Our goal is minimum-error 3D scene reconstruction
based on edge information with N calibrated smart cam-
eras through their collaborated distributed processing, as il-
lustrated in Fig. 1. A Bayesian approach is taken to 3D
reconstruction, where the surface is treated as a stochastic
process modelling the smoothness of the surface. Thanks
to the apparent contours’ robustness to environmental fac-
tors, shape-from-apparent-contours is more suitable for out-
door distributed camera applications than the intensity-
based multi-view reconstruction. The representation for the
estimated surface is a discretized level set function defined
on a grid of voxels. The cost function to be minimized is
the sum of the area of the 3D surface and the integral of
“consistency” between the apparent contour of the current
surface estimate and the image edges. The object surface
is to be reconstructed distributedly with N smart cameras
co-operating to minimize both the processing time and the

1

consumed on-board battery energy. Computation and com-
munication load-balancing are investigated to make battery
usage roughly at the same level over all the cameras.

1.3. 3D Surface Reconstruction

The proposed surface estimation procedure is iterative
through numerical solution of the first order variation of the
energy functional (i.e., the cost function). It turns out that
each iteration is a linear incremental change of the current
estimated surface. All of the computation takes place within
a thin band around the estimated surface. For each camera
c, the data and information available for the (t + 1)th iter-
ation is: its projection matrix; the edges in its image; and
a subset of voxels that this camera maintains. The incre-
mental update is the sum of two increments. The first incre-
ment comes from the contribution of the image edge data.
This increment attempts to align the contour generators of
the estimated 3D surface with the edge-data in the observed
image. The second increment is the contribution of the a
priori stochastic model of the 3D surface. Hence, for each
voxel on the estimated 3D surface at the start of an incre-
mental surface update-iteration, the cameras contributing to
the voxel update are the ones whose contour generators are
close to that voxel. A voxel is in the primary responsi-
bility set (PRS) of each camera whose image information
contributes to the voxel’s updating. Each contributes to the
first update-increment. One of these cameras takes respon-
sibility for computing the second update-increment. This
group of cameras each has a record of the changes made,
and therefore of the total update change made. For a 3D
surface voxel not contributed by any camera at the start of
an update-iteration, there is no first incremental-update, and
one of the cameras takes responsibility for computing and
communicating the second incremental-update. This voxel
is in the second set of the responsible cameras (SRS). Fig. 2
illustrates these concepts on a sphere shape.

1.4. Distributed Processing

It is know that that the battery power for two wireless
cameras to communicate is approximately proportional to
the square of their distance. Hence, rather than two cameras
communicating directly, the signals from the transmitting
camera travels to the receiving camera through a sequence
of relays where it travels from one camera to a camera that
is close, then to another close camera, etc. In this way, com-
munication power increases linearly with distance between
cameras. This is a camera communication network (CCN)
optimization problem that finds the best routing for each
communication, i.e. how to send messages.

For our purpose, only the end-to-end communication in
the application layer is considered. Inspired by the obser-
vation that the communication in the proposed algorithm
works more like broadcast (although not exactly, which will
be discussed later) than point-to-point ad-hoc communica-
tion, we can optimize the communication further by decid-
ingwhat to send andwho to send to, instead of only optimiz-
ing how to send. This results in an efficient message passing

Figure 1. Volumetric world, smart cameras and their observations.

protocol based on the minimum-spanning-tree of the cam-
era reconstruction network (CRN, the exact meaning will
be discussed later.)

Distributing the voxel updating job among all the smart
cameras to enable parallel processing is achieved by each
camera processing those voxels in its primary and second
responsibility sets. These sets for the various cameras are
close enough in size such that the partition results in bal-
anced parallel processing. A camera determines its sec-
ondary responsibility set through negotiating the boundaries
with its neighbor cameras in the CRN. Also incurred is bat-
tery energy for the communications in determining the sec-
ondary responsibility set. Rough minimization of commu-
nications battery energy is achieved by routing communi-
cations over paths contained in an MST (Minimum Span-
ning Tree). Also some communication is required among
cameras having primary sets that are close in order for the
cameras to figure out their secondary responsibility sets.

2. Shape From Apparent Contours

A shape-from-apparent-contours algorithm is first devel-
oped to reconstruct the 3D shape from apparent edges in
different views. The algorithm also incorporates the prior
knowledge about the surface (e.g., surface smoothness) to
produce a complete shape. The proposed algorithm com-
bines the ideas in 2D active contoursand variational surface
reconstruction [7, 6, 15, 9] based on implicit surface defor-
mation. In active contour fitting, the best curve C⋆ is found
by deforming a curve C(s) to make it fit the object bound-
aries:

C⋆(s) = arg min
C(s)

E(C(s)).

The functional E(C(s)) is usually defined as

E(C(s)) = µ

∫ 1

0

C(s)ds −

∫ 1

0

||∇GI(C(s)||ds (1)

where ds is the infinitesimal curve length, ∇GI(C(s)) =
∇(G ∗ I(C(s))) is the data term measuring the influence

Figure 2. Illustration of the key concepts (including contour gener-
ators, band, PRS, SRS) in the distributed reconstruction algorithm,
with a simple setting (a sphere shape and evenly distributed cam-
eras around the equator of the sphere.

of the image intensity gradient along the fitted curve, G ∗ I
is the convolution of the intensity image I with a Gaussian
filter G, µ is a scalar value controlling the influence of the
length of the curve.

Apparent contours are curves coming from contour gen-
erators on the surface through perspective projection. So in-
stead of assuming that the contours can be deformed freely,
we constrain them with a 3D surface:

Ci(s) = Πi(Gi(s)), (2)

where Πi is the ith camera’s perspective projection, which
maps a 3D point X to a 2D image point xi; Ci(s) is the ap-
parent contour in image i, Gi(s) is the corresponding con-
tour generator on the surface, as shown in Fig. 2. Notice
that

∫ 1

0

||∇GI(Ci(s))||ds =

∫

S

1Gi
(X)||∇GIi(Πi(X))||dA

(3)
where S is the surface. Equation (3) turns the line integral to
a surface integral with the introduction of the contour gen-
erator indicator function 1Gi

(X), which is a impulse func-
tion. (In experiment, it is approximated with a Gaussian
function.) Through the occluding geometry relationship be-
tween the surface normal N and the tangent plane N̄i (got
from back-projecting of the tangent line of the apparent con-
tours), we extend (3) to

∫

S

1Gi
(X)||∇GI(xi)|| · |N̄

T
i N|dA (4)

to further enforce the tangency constraint. The higher order

term |N̄T
i N| make sthe shape evolution converge faster and

more accurate.

The surface to be reconstructed S⋆ is the optimal sur-
face that minimizes an energy functional in the form of a
weighted area, with the weights depending on the M ob-
served images as in (4) and a prior term:

E(S) =
∫

S
Φ(X,N)dA

=
∫

S

(

∑M
i 1Gi

(X)||∇GI(xi)|| · |N̄
T
i N| + µ

)

dA,

(5)
where dA is an infinitesimal area element, µ is a parame-
ter controlling the smoothness of the surface. Interpreted
in Bayesian language, the prior energy term

∫

S
µdA corre-

sponds to a prior probability 1
Z

e−µArea((S)), which is the
energy representation of a 1st-order Continuous Markov
Random Field, encouraging smooth surfaces instead of
bumpy ones. The functional (5) is minimized through gradi-
ent descent methods by computing the first order variation.
The gradient descent flow for (5) can be written as [7]:

St = FN, (6)

F = 2κΦ − 〈ΦX,N〉 − 2κ〈ΦN,N〉. (7)

where κ is the mean curvature of the surface S. With the
level set representation, S = {X : φ(X) = 0}, the above
evolution equation can be rewritten as:

φt = F ||∇φ||. (8)

Through some calculus derivation, we get the speed func-
tion for (8) as

F = 2µκ −

M
∑

i=1

〈ΦiX,N〉. (9)

3. Distributed Algorithm for Scene Recon-
struction

In the above, we have briefly described a centralized al-
gorithm for shape from apparent contours, where one cen-
tral processor collects data from all cameras and processes
them in batch. In the visual sensor network applications,
distributed algorithms are preferred, where each smart cam-
era runs identical programs but with different states and dif-
ferent image inputs. In this section we show that the pro-
posed algorithm can be run distributedly on the smart cam-
era network by augmenting the algorithm with a job divi-
sion module and a communication module. Principally the
algorithm can be extended distributedly because: (1) the al-
gorithm reconstructs the contour generators, and the other
part of the surface is interpolated through the prior energy,
equivalently, a priori stochastic model for the 3D surface.
(2) It has been shown that the contour generators can be re-
constructed locally by studying the differential geometry of
the apparent contour change [4, 3, 10].

Vc the set of voxels that the camera c maintains

Cv the set of cameras that maintains voxel v
F c

v a scalar representing camera c’s contribution to voxel v’s updating
PRSc the primary responsible set of camera c
SRSc the secondary responsible set of camera c, PRSc ∪ SRSc = Vc

Table 1. Main notation summary

voxel ID voxel value neighbor cameras in MST

1001 1.302 {2, 30}
2187 -2.630 ...{10}
...

PRS: {1001, ...}
SRS: {2187, ...}
watching voxel list: {...}
boundary voxel list: {...}

Table 2. An example of the data structures that each camera main-
tains.

To highlight the structure of the reconstruction proce-
dure, we summarize each voxel’s updating with this for-
mula:

φt+∆t
v = φt

v + (2µκ +
∑

c∈Cv

F c
v)||∇φ||∆t, (10)

where Cv is the set of cameras c that has F c
v 6= 0 for voxel

v, F c
v is the speed contribution from camera c to voxel v:

F c
v = −〈ΦiX(v),N(v)〉. (11)

Formula (10) describes the updating operation for each
voxel. A naı̈ve parallel implementation of the algorithm
is to divide the entire set of voxels into M (the number
of smart cameras) subsets, and each camera takes care of
one subset of the voxels. The problem with this naı̈ve ap-
proach is that (1) each camera needs to maintain a copy
of all the other cameras’ observed images. This implies
a huge amount of data communication, which prevents
the algorithm scaling up to a large camera network; (2)
the contour generators dynamically change as the surface
shape evolves. So fixing the set of voxels that each camera
maintains requires distant cameras to exchange information
about voxels’ states and image observations. This prevents
the communication between cameras from being localized.

Instead we build a camera-centric distributed algorithm,
in which each camera c maintains a gradually changing dy-
namic subset Vc of voxels around the current estimated con-
tour generators seen by this camera. Algorithm 1 describes
the over-all procedure in a high level, with each subrou-
tine being discussed in detail later in Algorithms 2 and 5.
Through each camera maintaining a subset of voxels Vc

and localizing the computation and communication, Algo-
rithm 1 has good scalability with respect to the number of
cameras and the resolution of the volumetric representation.
In the following, we elaborate on different aspects of the
distributed algorithm, including complete surface coverage,
computation load balancing among cameras, communica-

Figure 3. Illustration of job distribution scheme in 2D case. The
light-green strip indicates the narrow band. The dark blue indi-
cates the PRS of camera 1; the shallow blue indicates the SRS
voxels of camera 1. The dark red indicates the PRS of camera 2;
the shallow red indicates the SRS of camera 2.

tion optimization, etc. For the sake of clarity, Table 1 sum-
marizes the main notation used in the following discussion;
And Table 2 shows the main data structures that each cam-
era maintains to support the distributed algorithm. The us-
ages of these data structures is discussed below.

Algorithm 1 Camera-centric distributed algorithm for
scene geometry reconstruction

1: for each smart camera c, do
2: Compute the incremental updates F c

v , ∀v ∈ Vc,
according to formula (11). If maxv∈Vc

|F c
v | < ε

(where ε is a stop criterion threshold), then termi-
nate.

3: Send F c
v to all the cameras in Cv , ∀v ∈ Vc through

a minimum-spanning-tree (MST) message passing
protocol as described in Algorithm 5.

4: Update each voxel’s level set value according to for-
mula (10), after receiving messages from the other
tree branches of this node in the MST, as described
in Algorithm 5.

5: Update the voxel set Vc as described in Algorithm 2.
6: end for

3.1. Job Distribution Scheme

In the level set method ([12, 14]), a narrow band imple-
mentation is commonly used to save memory and compu-

tation. It is based on the fact that only the voxels around
the surface (zero-level set) contribute to the shape evolu-
tion. So in the implementation, a band Ω around the sur-
face S is defined with an interval [DL,DH] on each voxel’
level set function value and only the voxels inside the band
are updated (see Fig. 2). The price for this is that after each
iteration the band should be updated to keep the new sur-
face always inside the band through keeping a watching list
of voxels, which keep track of the boundary of the narrow
band. As illustrated in Fig. 2 (3D version) and Fig. 3 (2D
version), we need to further divide the band into patches so
that each camera takes care of one patch. Each patch should
contain at least all the “core voxels” — those voxels around
its contour generator defined by the contour generator indi-
cator function. The set of “core voxels” are called the Pri-
mary Responsible Set (PRS); (2) Each patch should include
some “free voxels” — those voxels around the core voxels
that are not taken care of by any other cameras. These “free
voxels” hosted by camera c belong to the Secondary Re-
sponsible Set (SRS) of camera c. To effectively distribute
the reconstruction job among the cameras, there are three
criteria that the job division scheme should address:

PRSc ∈ Vc (correctness) (12)

∪cVc = Ω (complete coverage)(13)

|Vc| is approximately equal (load balance) (14)

Eqn. (12) guarantees the correctness of the speed computa-
tion F c

v ; Eqn. (13) ensures that all voxels inside the narrow
band Ω are updated. With the satisfaction of (12) and (13),
the “free” voxels are distributed with the consideration of
load balance among cameras with the Algorithm (4).

Algorithm 2 Update the voxel set Vc for each camera c

1: Update the PRS of camera c as described in Algo-
rithm 3.

2: Update the SRS of camera c as described in Algo-
rithm 4.

Algorithm 3 Update the PRS

1: % update the narrow band
2: for each voxel v in the watching list, do
3: if its level set function value φ(v) ∈ [DL,DH] then
4: expand the boundary voxels by adding the neigh-

bor voxels whose level set function’s absolute val-
ues are greater than |φ(v)|.

5: else
6: delete this voxel.
7: end if
8: end for
9: Update the contour generator indicator values 1Gc

(v),
∀v ∈ Vc for camera c. Put voxels whose indicator value
is above a threshold TG into the new PRS.

As described in Algorithm 1, after each iteration, for
each camera c, its voxel set Vc (composed of PRS and SRS)

Algorithm 4 Update the SRS for camera c

1: % update the boundary list
2: for each boundary voxel v, do
3: for each c′ ∈ Cv, do
4: if v ∈ PRSc′ then
5: delete v from Vc; Add its neighbors to the

boundary voxel list.
6: end if
7: end for
8: end for
9: % At this stage, each boundary voxel has only two

hosts.
10: % Now start pairwise load balance.
11: for each voxel v in the boundary list, do
12: c′ = Cv\c,
13: if |Vc′ | < |Vc| then
14: delete v from Vc, and add its neighbors to the

boundary voxel list.
15: end if
16: end for

should be updated. First each camera’s new PRS can be
computed easily, given the new detected contour generator,
through narrow band updating, as described in Algorithm 3.
Besides PRS, there are other portions of the surface that are
not covered by any camera. To ensure that these “free” vox-
els are updated correctly, we need to assign them to some
host cameras. These “free” voxels are put in the SRS of
their corresponding host cameras. There are two considera-
tions in these voxels’ distribution: These voxels may belong
to neighbor cameras’ PRS in the next iterations, so if we
could put these voxels to these potential cameras then we
can save the communications later; Another concern is the
load balance. Due to the non-uniformity of the surface and
the distribution of the cameras, the size of the PRS for each
camera is different. The existence of these “free” voxels
provides us a leverage to balance the workload among cam-
eras. The PRSs are fixed for the given surface and the cam-
eras’ locations; The SRSs are flexible as long as together
with PRS they cover the whole surface. We can take ad-
vantage of this to assign these “free” voxels to the cameras
that have relatively small PRS’s. The workload balances
are negotiated pairwisely by neighbor cameras that share
boundaries, as described in Algorithm 4. The communica-
tions in Algorithm 4 happens in two steps: 1) communica-
tion between c and c′ when checking v ∈ PRSc′ ; 2) com-
munication between c and c′ when checking |Vc′ | < |Vc|.
Since this operation is performed for each boundary voxel,
the communication cost is proportional to the number of
boundary voxels.

3.2. Communication Optimization

As discussed above, cameras need to communicate with
each other locally to share information about their common
voxels and dynamically assign work loads among cameras.
Here we examine the problem of optimizing the communi-

(a) (b) (c)

Figure 4. Illustration of a simple communication case. (a) the vir-
tual communication path in the naı̈ve approach; (b) the physical
communication path in the naı̈ve approach; The communication
cost is 8 units; (c) the physical communication path in the MST
case; The communication cost is 4 units.

cations between these cameras. From the above description
(especially in (10)), we know that each voxel’s incremental
update is composed of the summation of the participating
cameras’ contributions. So the basic communication job is:
sending each camera c’s incremental updating contribution
F v

c to all the other cameras in Cv . Now let us analyze the
communication cost of the naı̈ve approach – each camera
sends its own value F c

v to all other cameras in the set Cv

directly. Suppose the communication cost between neigh-
bor cameras in the graph is 1 unit. For a random graph, the
average communication complexity for one message pass-
ing is O(D) = O(log(N)), where D is the diameter of
the communication graph of the network. Then, the total
average communication complexity is O(N2log(N)). The
worst case for one message passing is N , with the worst
total communication complexity being N3.

Instead of sending F c
v directly to all the other cameras

in Cv , there exists a more efficient way. Look at what each
camera needs — the summation of F v

c from all the partic-
ipating cameras c ∈ Cv . Based on this observation, our
solution is the tree message passing protocol, as described
in Algorithm 5 and illustrated in Fig. 5. We store this tree
representation of the CRN distributedly, through each cam-
era maintaining a list of directly connected camera nodes
for each voxel, as shown in Table 2. Why does the mes-
sage passing work correctly for the tree structure? This is
because there is “no loop” in the tree, which guarantees
that cutting each edge will separate the tree into two sep-
arate subtree. And the message sent through the edge is
all the summed information from the subtree. In this way,
each node’s value is contributed to other nodes exactly once.
Take the tree in Fig. 5 for example. For node j, it will re-
ceive message from k, l and i. And each message from
k, l, i is the summation of the values in their subtrees {k},
{l}, and {i,m, n, o, p, q}.

Next the communication cost of the tree message pass-
ing scheme is analyzed. For a tree with N nodes, there are
(N − 1) edges and since we send information bidirection-
ally, the communication cost is 2(N − 1) units. Given the

Algorithm 5 Tree message passing protocol

1: for each node in the tree, do
2: Compute and send message to one edge if the mes-

sages from the other edges have been received;
3: Otherwise, wait.
4: end for

Figure 5. Illustration of the minimum spanning tree message pass-
ing. Each node sends a message to one of its edges given the
message from the other edges have arrived.

set of cameras Cv for a fixed voxel v, there are many trees
that can be constructed; which one is the best? Given a
weighted undirected graph G, we define a minimum span-
ning tree (MST) as a connected subgraph of G for which
the combined weight of all the included edges is minimized.
In our case, the minimum spanning tree is the one that has
the minimum communication cost. Since voxel updating
is a key operation in the algorithm, the improvement on
this operation will greatly speed up the algorithm. The tree
message passing is very useful for distributed smart camera
systems in general, since it is a common operation to sum-
marize message in one subgraph and send it to the other
branch. The tree message passing ensures that the protocol
described above works correctly for tree topology structure.
The MST can also be constructed and updated distributedly
(See [2, 8, 5] for more details.)

With this MST protocol described in Algorithm 5, we
can see that each camera updates its own copy of voxels
only after receiving messages from all its neighbor cameras.
By this, there is no need to synchronize among the cameras
after each iteration. Each camera runs its own algorithm
and updates its own state only after it receives all the infor-
mation needed asynchronously. And the synchronization is
implicitly controlled by the message passing.

4. Experimental Results

We first test the proposed algorithm on a public dataset,
Toy Dinosaur 1. In Fig. 6, two sample images out of a to-
tal of 23 images are shown. In this dataset, the background

1This dataset is available at http://www-cvr.ai.uiuc.edu/
ponce_grp/data/mview/.

Figure 6. Two sample images
of the Toy Dinosaur dataset

Figure 7. The reconstructed
dinosaur shape

Figure 8. Shape evolution path of the Toy Dinosaur

is relatively simple. The level set function is defined on a
56×120×96 grid, µ is set as 0.01 (a small value to prevent
smoothing out the dinosaur’s high curvature parts). Fig. 7
shows the reconstructed shape after 200 iterations. From
the results, we see that the overall shape is successfully re-
constructed. Fig. 8 shows the whole shape evolution pro-
cess, starting from a bounding rectangular box. It success-
fully converges to the concave parts, e.g. recovering the two
hands, and separating two legs, etc. The reconstruction ac-
curacy is measured by the projection error, which is defined
as the distance between the projected apparent contour and
the image apparant contour. The average projection error
for this dataset is 0.21 pixels.

The next experiment is on the David bust dataset which
consists of 20 calibrated images taken by one moving real
camera. Fig. 9 shows samples of the image sequence.
This dataset is challenging in two aspects. First the ob-
ject is textureless, non-Lambertian, and the illumination
changes (due to flash light), which challenges most multi-
view stereo algorithms based on intensity matching. Sec-
ondly the object is embedded in an natural indoor back-
ground. In the experiment on this dataset, the level set func-
tion is defined on a 64 × 64 × 64 grid, and the parameter µ

Figure 10. Shape evolution path of the David bust

is set as 0.05. The projection error for the David dataset is
0.37 pixels. The projected 3D reconstructed apparent con-
tours are shown in Fig. 9. Fig. 10 shows the whole evolution
path, starting from a cubic bounding box. It can be seen that
the shape evolution process does converge to the object even
though the background in the image is complex.

A rough estimate of communication load and hence bat-
tery energy expenditure. As discussed previously, neighbor
cameras communicate with each other 1) to figure out the
ownership of the “free” voxels; and 2) to exchange infor-
mation about the voxels’ update values. In these two ex-
periments, the total number of iterations is set as 200. The
narrow band-width is 6, so the number of voxels in the nar-
row band is the surface area times the narrow band width
(approximately 3 × 104 for the Dinosuar dataset). Each
voxel is maintained by 3 cameras on average. So the total
number of voxels that all the cameras take care of is about
three times that number: 6 × 104. Since 20-23 cameras
can cover the surface tightly, the number of “free” voxels
is small compared to the size of the union of the PRS. So
the message exchanged is dominated by the voxel updat-
ing messages. As shown in section 3.2, the total number of
update values exchanged is 2(N − 1) ≈ 1.2 × 105. Each
update value is 4 bytes (stored in single precision format),
the total number of communication bytes for each iteration
is 4.8 × 105 = 48KB. With 200 iteration, the total data
exchanged is about 13.6 MB. This order of communication
cost is affordable in VSNs.

5. Conclusions and Discussion

In this paper we define the problem and present a solu-
tion to the 3D reconstruction of an object, indoors or out-
doors, from silhouettes in images taken by a network of
many randomly distributed battery powered cameras hav-
ing onboard processing and wireless communication. The
goal is reconstruction to close to the achievable accuracy
while roughly minimizing processing time and battery us-
age. (More generally, other constraints may be present, e.g.,
communication bandwidth limitation.) The challenge is to
use few image pixels in an image, to communicate as lit-
tle data as possible, and for each camera to communicate

Figure 9. (top) Image sequence with indoor background; (bottom) Projected silhouette contours (in red) estimated by the algorithm, during
the 3D reconstruction process, overlapped with the image edges

to as few other cameras as possible. Our solution involves
maximum a posteriori probability estimation for achieving
close to optimal accuracy, introducing and using a dynami-
cally changing vision graph for assigning computation tasks
to the various cameras for achieving minimum computation
time, and routing camera communications over a minimum
spanning tree (MST) for achieving minimum communica-
tions battery usage.

The main contribution of this work is the distributed
processing of shape-from-contours, including the region-
specific vision graph, job division schemes, and the MST
message passing protocol. The region-specific vision graph
and MST message passing developed in the paper can be
applied to other distributed vision tasks generally. The job
division scheme is linked to the shape-from-contours ap-
proach more tightly, but the principals developed here, in-
cluding the three constraints (correctness, complete cov-
erage and load balance), can be extended to other vi-
sion problems. For example, for shape from texture and
contours, similar job division schemes can be developed
by selecting most valuable image observations. The dis-
tributed algorithm proposed in the paper is not only appli-
cable to smart camera network but also applicable to multi-
processor systems such as many-core CPUs and GPUs
nowadays. We compute rough estimates of the amount of
required computation and the required communication cost.
The approach is appropriate for networks of very large num-
bers of cameras.

Acknowledgement. This work is partially supported by
the NSF IIS Program Grant NO 0808718.

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.
Wireless sensor networks: a survey. Computer Networks,
38:393–422, 2002.

[2] B. Awerbuch. Optimal distributed algorithms for minimum
weight spanning tree, counting, leader election and related
problems. In Proc. 19th Symp on Theory of Computing,
pages 230–240, May 1987.

[3] M. Brand, K. Kang, and D. Cooper. Algebraic solution to
visual hull. In CVPR, 2004.

[4] R. Cipolla and P. Giblin. Visual Motion of Curves and Sur-

faces. Cambridge University Press, 2000.

[5] B. Das and V. Loui. Reconstructing a minimum spanning
tree after deletion of any node. Algorithmica, 31:530–547,
2001.

[6] O. Faugeras, J. Gomes, and R. Keriven. Geometric Level Set
Methods in Imaging, Vision and Graphics. Osher and Para-

gios Eds., chapter Variational Principles in Computational
Stereo. 2003.

[7] O. Faugeras and R. Keriven. Variational principles, surface
evolution, PDE’s, level set methods and the stereo problem.
IEEE Trans. Image Processing, 7(3):336–344, 1998.

[8] R. Gallager, P. Humblet, and P. Spira. A distributed algo-
rithm for minimum weight spanning tree. ACM Trans. on

Programming Languages and Systems, 5(1):66–77, January
1983.

[9] P. Gargallo, E. Prados, and P. Sturm. Minimizing the repro-
jection error in surface reconstruction from images. In ICCV,
pages 1–8, 2007.

[10] S. Liu, K. Kang, J.-P. Tarel, and D. Cooper. Free-form object
reconstruction from silhouettes, occluding edges and texture
edges: A unified and robust operator based on duality. PAMI,
30(1):131–146, January 2008.

[11] K. Obraczka, R. Manduchi, and J. Garcia-Luna-Aveces.
Managing the information flow in visual sensor networks. In
5th Symp. Wireless Personal Multimedia Communications,
volume 3, pages 1177–1181, 2002.

[12] S. Osher and R. Fedkiw. Level Set Methods and Dynamic

Implicit Surfaces. Springer-Verlag, New York, 2002.

[13] B. Rinner and W. Wolf. An introduction to distributed smart
cameras. Proceedings of the IEEE, 96:1565–1575, 2008.

[14] J. A. Sethian. Level Set Methods and Fast Marching Meth-

ods. Cambridge University Press, 1999.

[15] A. J. Yezzi and S. Soatto. Stereoscopic segmentation. In
ICCV, 2001.

