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Abstract

In this paper, we present an approach to multi-view
image-based 3D reconstruction by statistically inversing the
ray-tracing based image generation process. The proposed
algorithm is fast, accurate and does not need any initializa-
tion. The geometric representation is a discrete volume di-
vided into voxels, with each voxel associated with two prop-
erties: opacity (shape) and color (appearance). The prob-
lem is then formulated as inferring each voxel’s most prob-
able opacity and color through MAP estimation of the de-
veloped Ray Markov Random Fields (RayMRF). RayMRF
is constructed with three kinds of cliques: the usual unary
and pairwise cliques favoring connected voxel regions,
and most importantly ray-cliques modelling the ray-tracing
based image generation process. Each ray-clique connects
the voxels that the viewing ray passes through. It provides
a principled way of modeling the occlusion without approx-
imation. The inference problem involved in the MAP esti-
mation is handled by an optimized belief propagation al-
gorithm. One unusual structure of the proposed MRF is
that each ray-clique usually involves hundreds/thousands of
random variables, which seems to make the inference com-
putationally formidable. Thanks to the special property of
the ray-clique functional form, we investigate the deep fac-
torization property of ray-clique energy and get a highly
efficient algorithm based on the general loopy belief prop-
agation, which has reduced the computational complexity
from exponential to linear. Both of the efficient inference
algorithm and the overall system concept are new. Combin-
ing these results in an algorithm that can reverse the image
generation process very fast. 3D surface reconstruction in
a 100x100x100, i.e., 106 voxel space with 10 images re-
quires roughly 3 minutes on a 3.0 GHz single-core CPU.
The running time grows linearly with respect to the number
of voxels and the number of images. And the speed could be
further improved with a hierarchical sparse representation

of the volume, like octree. Experiments on several standard
datasets show the quality and speed of the proposed models
and algorithms.

1. Introduction
Image-based 3D modeling is the problem of recovering

scenes’ 3D geometry and appearance from images. Nowa-
days, with the prevalence of digital cameras, image-based
3D modeling has the clear advantage over other 3D mod-
eling techniques in terms of equipment availability, afford-
ability and amount of user input, besides advantages on op-
eration conditions, scalability, etc. Image-based 3D mod-
eling is usually the preferred solution for 3D modeling if
satisfactory algorithms can be developed to accomplish its
goal under normal working conditions.

There have been large amount of related work on Image-
based 3D modeling, thanks to its long history and popu-
larity. Here the historical context of this work is briefly re-
viewed, then a few related papers are picked up for more de-
tailed review. Image-based 3D modeling started from stereo
vision through image-matching and triangulation. Later
multi-view extension of triangulation is developed, result-
ing in the various kinds of multi-view geometries [7]. Re-
cent focus has shifted to statistical models, trying to opti-
mize the re-projection error. This work is no exception. A
good summary and evaluation of the recent developments
can be found in [17]. Past works can be roughly divided into
two categories based on the visibility model they used. The
first approach estimates the visibility (i.e., occlusion) based
on initial surface [19] or currently estimated surface [6, 12];
The other approach estimates the visibility based on the
probabilistic opacity of the volume (usually for voxel based
approach) [4, 15]. Our method falls into the second cate-
gory.

Next several representative papers, which share com-
mon elements with our proposed approach, are reviewed.



The iterative space carving idea was first introduced in
[12], where a discrete volume is carved based on a photo-
consistency function. The shape shrinks from a super shape
(usually a bounding box) to “photo-hull”. It shares the same
kind of weakness as other approaches based on local photo-
consistency measurement: If the photo-consistency is de-
fined stringently, then the shape will continue shrink, which
may penetrate into a hole, or shrink to nothing. If it is de-
fined loosely, then the shape is a superset of the ground
truth shape. Our approach overcomes the problem by hav-
ing viewing rays that pass through the same voxel compete
with each other to reach a final agreement over the voxel’s
opacity. In this way, it avoids the local consistency check-
ing, which leads to inferior local minimum. In [19], the
idea of MRF based modeling and graph-cut based optimiza-
tion was introduced to multi-view modeling. Their MRF
model is a simple extension of 2D MRF commonly used in
image processing, where each hidden variable having a di-
rect observation. In [19] the observation of each voxel is
defined in a heuristic way, relying on an initial surface to
help compute an approximation of the visibility. Our ap-
proach shares the idea of using MRF for multi-view stereo,
but defines a more realistic model by modeling the image
generation process directly and does not require an initial
shape. In [4], space carving is extended to the probabilis-
tic setting, where the visibility is modeled probabilistically.
The volumetric rendering function is directly used to model
the image generation process. But to get a computation-
ally affordable solution, they resort to defined the photo-
consistency function based on 2-3 views. And in [15], the
Bayesian online updating of a voxel world is extended to
model a dynamic 3D scene for change detection. The in-
ference of the model is done through simple iterative online
updating based on Bayesian theorem. But the online up-
ating nature make it not guaranted to satisfy all the image
constraints. Our approach shares the idea of direct model-
ing the image rendering process. We build a MRF and carry
out inference with more efficient techniques, including EM
for voxel color estimation and optimized belief propagation
for voxel opacity estimation. In this work, we need to han-
dle high order MRFs to model the occlusion relationship
between voxels. Related to this, in [16], Potetz proposed
a BP algorithm for a class of higher-order potential func-
tions – linear constraint functions. However, the functional
form of our ray clique does not fall into that category. In
[21], Wei and Quan expressed the visibility constraints as a
large number of O(N2) of pairwise nodes, and then solved
it with graph-cuts. Here we deal with occlusion differently
by exploring deep factorization property of the ray-tracing
rendering equation.

This paper is organized in the following way. In Sec. 2, a
statistical image formation model is introduced and further
a Markov Random Field model, based on the image for-

mation model, is formulated. The inference of this model
is studied in Sec. 3.2 and 3.1. Sec. 3.2 solves the prob-
lem of estimating each voxel’s intensity through estimating
a marginalized distribution over the surface shape. Sec. 3.1
develops the optimized belief propagation algorithm for the
large clique inference problem by taking advantage of the
special property of ray-clique functional form. After that,
experiments and discussions follow, which demonstrates
the quality of proposed solution, and discuss possible ex-
tensions of the current work.

2. Ray Markov Random Fields
2.1. Volumetric Representation

The scene’s geometry and appearance is modeled with
an evenly divided discrete volume, each unit being a voxel.
Each voxel has two properties: opacity and color. Opacity
is a binary variable, 0 for empty and 1 for solid. The color of
the solid voxel represents the appearance of the object. We
also assign a color for the empty voxels, just for the conve-
nience of computation and representation, because we don’t
know which voxel is empty a priori. On the other hand, the
color of the empty voxel does not violate the image gener-
ation process, because it cannot be observed. Figure 1 and
2 illustrates the basic concepts. Table 1 summaries some of
the notations used throughout the paper.

2.2. Statistical Rendering Equation and Ray-Clique

Image is record of the amount of lights received at the
imaging sensor. The pixel value IR of a ray R is propor-
tional to the amount of light it received, equivalently, the
amount of light that the surface point x∗R reflected towards
direction R (the geometry relationship between IR, x∗R, R
is illustrated in Fig. 1):

IR = γLo(x∗R, R) (1)

where γ is a scale constant. With suitable units, γ can be set
as 1. Lo(x∗R, R) is a function of its environmental light and
its material. This relationship is modeled by the rendering
equation, introduced by Kajiya in 1986 [8]:

Lo(x∗R, R) =
∫

Ω

ρ(x∗R, R,R
′)Li(x∗R, R

′)(−R′ · n)dR′

(2)
where Lo(x∗R, R) is the radiance of light that point x∗R sends
towards direction R, Li(x∗R, R

′) is the radiance of light that
point x receives from directionR′, ρ(x∗R, R,R

′) is the Bidi-
rectional Reflectance Distribution Function (BRDF) of the
surface material at x∗R, which measures the proportion of
light reflected from R′ to R at position x∗R. As the first
step towards reversing the rendering equation, in this work
we do not intend to recover the surface BRDF, instead we



R viewing ray, which start from the camera center and going through a pixel
IR intensity value of the pixel, where the viewing ray R back-projects from
X the set of voxels in the volume
XR the set of voxels on R which passed through volume X , i.e., XR = R ∩X .

The points (voxels) are ordered in the viewing ray traversal order.
x a voxel in discrete volume
xR a voxel in XR, i.e., xR ⊂ XR

S the set of surface points
x∗R the intersection point of R and surface S, i.e., x∗R = XR ∩ S
Lo(x∗R, R) the radiance of surface point x∗R towards direction R
R′ an incoming light ray
Li(x∗R, R

′) the incoming light radiance from direction R′ to surface point x∗R
xo opacity of a point (voxel) x
xc color intensity of a point (voxel) x
Xo
R opacity of the points (voxels) on Ray R

Xc
R color intensity of the points (voxels) on Ray R

Table 1. Notations

Figure 1. Illustration of Image Formation Process

(a) voxel based representation of a
discrete volume

(b) RayMRF

Figure 2. A toy RayMRF model (visualized with the factor graph rep-
resentation [11]): black balls represent voxels, square cubes repre-
sent clique factors and tubes represent clique connections: green for
unary-clique, blue for pairwise-clique, and red for ray-clique.

resort to simply the rendering equation by building a statis-
tical rendering model marginalized over BRDF. Under the
common assumption that the lighting is ambient (reason-

able approximate for most outdoor and indoor scenarios),
ρ(x∗R, R,R

′) ∗ Li(x∗R, R′) is only a function of (x∗R, R).
Further we use the Phong shading model to approximate the
BRDF with two components: diffuse reflection and specu-
lar reflection. And based on the property that specular re-
flection have constant chromatic components for all direc-
tion of R, we can build a simple statistical model as

IR ∼ N (xc∗
R,Σx∗R). (3)

where IR is measured in the CIELab color space. Here we
assume the three channels of the color is independent, so
the co-variance matrix Σx∗R is diagonal. Different compo-
nent of Σx∗R measures different variance of illumination and
chromatic values. (Illumination component normally have
larger variance than chromatic values due to the existence of
specular reflectance.) Expressed with the probability den-
sity function, we have

fR(IR) =
1

(2π)3/2|Σx∗R |1/2
exp(−1

2
(IR−xc∗

R)TΣ−1
x∗R

(IR−xc∗
R))

(4)
This statistical model is a minor generalization of the Lam-
bertian model. This pixel value distribution defines a clique,
(referred as ray-clique after wards), which is a observa-
tion of the points (voxels) along the viewing ray. The ray-
clique is unusual due to the fact that it involves (commonly)
hundreds to thousands of voxels, in contrast to 2 (pairwise
clique) or dozens of (higher order clique) random variables
for traditional MRF. It seems formidable to infer this model
with ray-clique involved, from previous MRF experience in
the first glance, but we will show that there exists very fast
efficient inference for ray-cliques in Sec. 3.1.



2.3. Ray MRF

Besides the ray-clique, which models the observation
process, there are two other cliques: unary-cliques and
pairwise-cliques, modeling the prior distribution of the dis-
crete volume. Unary-cliques model the preference of a
voxel being solid or empty; And pairwise-cliques model the
smoothness of the volume. Formally, the whole MRF can
be expressed in the following energy form:

E(X) =
X
R

ER(XR)+αp

X
<i,j>∈Np

Ep(xi, xj)+αu

X
k

Eu(xk)

(5)
where ER is the clique energy for the ray R, XR is the set
of voxels that ray R passes through; Eu is the unary clique
energy; Ep is the pairwise clique energy; αu and αp are
respectively the weight for unary clique and pairwise clique.
The functional form of each energy function is defined as
following:

Eu(xk) =
{

0, xok = 1
1, xok = 0 (6)

Ep(xi, xj) =
{

0, xoi = xoj
1, xoi 6= xoj

(7)

ER(XR) = (IR − xc∗R)TΣ−1
x∗R

(IR − xc∗R) (8)

where

xc∗R =



xc0, Xo
R = 1,×,×,×,×, · · ·

xc1, Xo
R = 0, 1,×,×,×, · · ·

· · ·
xci , Xo

R = 0, · · · , 0︸ ︷︷ ︸
i

, 1,×, · · ·

· · ·

(9)

Note that the value of Xo
R is a vector of opacity values for

the voxels sorted in the traversal order of the viewing ray.
The graphical structure of the MRF is illustrated in Fig. 2,
where cliques are represented with a cube representing the
clique factor, a tube connecting the random variables (i.e.,
voxels), following the conventions of factor graph [11].

3. Efficient Inference
3.1. Voxel Opacity Estimation Through Optimized

Belief Propagation

The inference of the proposed RayMRF is to estimate
voxels’ most probable opacity (shape) and color (appear-
ance). In this paper, this is done through a two-stage pro-
cess. First each voxel’s color is estimated through an ap-
proximate multi-view image generation process. Then the
opacity of voxels can be estimated by highly optimized be-
lief propagation. In this section, the focus is on estimat-
ing voxels’ opacity, which is one of the main contribu-
tions of this paper. The color estimation will be discussed

(a) ray-voxel relationship (b) message passing from R to
x1

Figure 3. Toy Ray-Clique Example

in the next subsection. For MRF, two approximate infer-
ence methods, graph cuts [10] and loopy belief propagation
(BP) [9] [14] [18], are usually deployed for their good infer-
ence quality and speed. Usually cliques involve only a few
random variables for most MRF., To our knowledge, there
is no literature on how graph-cuts can be applied in the case
that each ray-clique involves hundreds/thousands of voxels
(random variables). Here we will investigate how loopy be-
lief propagation can be applied here. The direct implemen-
tation of BP for ray-clique, which has hundreds of voxels
involved, is formidable computationally. The computation
for each message sent from a clique to a node increases ex-
ponentially with the number of nodes in each clique. In
some sense, cliques with more than hundreds of voxels in-
volved violates the essence of MRF, which try to factor the
whole joint distribution (energy) into small clique distribu-
tion (energy). In [16], Potetz proposed a BP algorithm for a
class of higher-order potential functions – linear constraint
functions. However, the functional form of our ray clique
does not fall into that category. Here we will show that al-
though ray-clique cannot be further factorized, it has some
special structure that allow efficient computing of BP mes-
sages, resulting a highly optimized belief propagation.

Message sending for self-clique and pairwise-cliques are
no special, compared to other MRF applications. To save
space, we omit the technical details for them. Here we de-
vote the space on deriving the optimized ray-clique mes-
sage passing, which plays a key role in the whole inference.
For a clique with N binary random variables, the direct im-
plementation of belief propagation takes O(2N ) computa-
tion. Here for optimized message passing of ray-clique, the
computation is reduced to O(N). Intuitively, this is pos-
sible because the ray-clique energy function can only take
N possible values, although there are 2N configurations for
the random variables. Detailed formulations are discussed
in the the single-column page 6.

3.2. Voxel Color Estimation

We first show that voxels’ color can be estimated fairly
well independently of voxels’ opacity. A voxel can be ob-
served by a camera if it is solid and there is no occlusion
between the camera center and the voxel. Each voxel has
potentially N (the number of cameras) observations if it
can be observed in all cameras. Since we don’t know which



To make things clear, let’s start from a simple example – a ray-clique which has 4 voxels: ER(x0, x1, x2, x3), as illustrated
in Figs. 3. Let’s derive the message that the ray clique send to voxel x1, for example. In the following derivation, we follow
the convention: The messages are represented in log scale to be immune to over-floating, so the BP is in min-sum form; The
message is a 2D vector (one component for x = 0 (empty), another one for x = 1 (solid)). Here we normalize the message to
make the messages send from node x to ray clique R have mx→R(0) = 0. This simplifies the notation below and also saves
memory in implementation. The “×” symbol denotes either 0 or 1.

mR→x1
(0) = min

0BBBBBBBBBBBBB@

ER(0, 0, 0, 0) + mx0→R(0) + mx2→R(0) + mx3→R(0),

ER(0, 0, 0, 1) + mx0→R(0) + mx2→R(0) + mx3→R(1),

ER(0, 0, 1, 0) + mx0→R(0) + mx2→R(1) + mx3→R(0),

ER(0, 0, 1, 1) + mx0→R(0) + mx2→R(1) + mx3→R(1),

ER(1, 0, 0, 0) + mx0→R(1) + mx2→R(0) + mx3→R(0),

ER(1, 0, 0, 1) + mx0→R(1) + mx2→R(0) + mx3→R(1),

ER(1, 0, 1, 0) + mx0→R(1) + mx2→R(1) + mx3→R(0),

ER(1, 0, 1, 1) + mx0→R(1) + mx2→R(1) + mx3→R(1)

1CCCCCCCCCCCCCA

= min

0BBB@
ER(0, 0, 0, 0),
ER(0, 0, 0, 1) + mx3→R(1),

ER(0, 0, 1,×) + mx2→R(1) + min(0, mx3→R(1)),

ER(1, 0,×,×) + mx0→R(1) + min(0, mx2→R(1)) + min(0, mx3→R(1))

1CCCA

(10)

mR→x1
(1) = min

0BBBBBBBBBBBBB@

ER(0, 1, 0, 0) + mx0→R(0) + mx2→R(0) + mx3→R(0),

ER(0, 1, 0, 1) + mx0→R(0) + mx2→R(0) + mx3→R(1),

ER(0, 1, 1, 0) + mx0→R(0) + mx2→R(1) + mx3→R(0),

ER(0, 1, 1, 1) + mx0→R(0) + mx2→R(1) + mx3→R(1),

ER(1, 1, 0, 0) + mx0→R(1) + mx2→R(0) + mx3→R(0),

ER(1, 1, 0, 1) + mx0→R(1) + mx2→R(0) + mx3→R(1),

ER(1, 1, 1, 0) + mx0→R(1) + mx2→R(1) + mx3→R(0),

ER(1, 1, 1, 1) + mx0→R(1) + mx2→R(1) + mx3→R(1)

1CCCCCCCCCCCCCA
= min

 
ER(0, 1,×,×) + min(0, mx2→R(1)) + min(0, mx3→R(1)),

ER(1, 1,×,×) + mx0→R(1) + min(0, mx2→R(1)) + min(0, mx3→R(1))

!
(11)

For a general ray-clique involving N voxels: ER(x0, · · · , xi−1, xi, xi+1, · · · , xN−1), let’s derive the message that the
ray sends to the ith voxel, mR→xi

. To simplify the notation, define EjR = ER(0, · · · , 0︸ ︷︷ ︸
j

, 1,×, · · · ,×), and ENR =

ER(0, · · · , 0, · · · , 0) which represents the ray-clique energy when the ray hits the background.

mR→xi
(0) = min

0BBBBBBBBBBBBB@

EN
R ,

E
N−1
R

+ mxN−1→R(1),

· · ·
E

i+1
R

+ mxi+1→R(1) +
PN−1

k=i+1+1 min(0, mxk→R(1))

E
i−1
R

+ mxi−1→R(1) +
PN−1

k=i−1+1 min(0, mxk→R(1)) −min(0, mxi→R(1)),

· · ·
E0

R + mx0→R(1) +
PN−1

k=0+1 min(0, mxk→R(1)) −min(0, mxi→R(1))

1CCCCCCCCCCCCCA
(12)

mR→xi
(1) = min

0BBBBB@
Ei

R +
PN−1

k=i+1+1 min(0, mxk→R(1)),

E
i−1
R

+ mxi−1→R(1) +
PN−1

k=i−1+1 min(0, mxk→R(1)) −min(0, mxi→R(1)),

· · ·
E0

R + mx0→R(1) +
PN−1

k=0+1 min(0, mxk→R(1)) −min(0, mxi→R(1))

1CCCCCA (13)

It can be written more concisely as:

mR→xi
(0) = min

0BB@ minN−1
j=i+1

„
E

j
R

+ mxj→R(1) +
PN−1

k=j+1 min(0, mxk→R(1))
ff

, EN
R

«
,

mini−1
j=0


E

j
R

+ mxj→R(1) +
PN−1

k=j+1 min(0, mxk→R(1)) −min(0, mxi→R(1))
ff

1CCA (14)

mR→xi
(1) = min

0@ Ei
R +

PN−1
k=i+1 min(0, mk→R(1)),

mini−1
j=0

n
E

j
R

+ mj→R(1) +
PN−1

k=j+1 min(0, mxk→R(1)) −min(0, mxi→R(1))
o 1A (15)

Denote
bmcxk→R = min(0, mk→R(1)), k ∈ [0, N − 1]

bmc+xj→R
=
PN−1

k=j
bmcxk→R, j ∈ [0, N − 1]; bmc+xN→R

= 0.

bmc+
R→xi

= minN−1
j=i+1(


E

j
R

+ mxj→R(1) + bmc+xj+1→R

ff
, EN

R ), i ∈ [0, N − 1]

bmc−
R→xi

= mini−1
j=0


E

j
R

+ mj→R(1) + bmc+xj+1→R
− bmcxi→R

ff
, i ∈ [0, N − 1]

then
mR→i(0) = min(bmc+

R→xi
, bmc−

R→xi
), i ∈ [0, N − 1]

mR→i(1) = min(Ei
R + bmc+xi+1→R

, bmc−
R→xi

), i ∈ [0, N − 1]
(16)

where bmc+R→xi
and bmc−R→xi

can be computed in a sweep for i taking values from 0 to N .

bmc+
R→xi

= min(E
i+1
R

+ mxi+1→R(1) + bmc+xi+2→R
, bmc+

R→xi+1
), bmc+

R→xN−1
= EN

R (17)

bmc−
R→xi

= min(E
i−1
R

+ mxi−1→R(1) + bmc+xi→R
− bmcxi−1→R, bmc−

R→xi−1
), bmc−

R→x0
= +∞ (18)

The computational cost for each message for a ray-clique with N random variables has reduced from O(2N ) (the usual
implementation) to O(N).



(a) solid voxel case: the
8 camera rays’ observations
come from either this voxel
or occluding voxels (called
foreground voxels)

background
background

(b) empty voxel case: the 8 cam-
era rays’ observations come from
either occluding voxels or back-
ground voxels

Figure 4. 2D illustration of the voxel’s multi-view generation
model

cameras can see this voxel without first knowing voxels’ oc-
cupancy, we collect all the potential observations and make
inference based on these N values. As shown in Fig. 4, the
pixel value IR can come from any voxel along the ray, or
from background (the region that are out of the volume of
interest). We summarize all the cases into two categories:
either from the point x∗R or from foreground / background
(foreground means that the object before this voxel, back-
ground means that the object after this voxel (if the voxel
is transparent). Formally, we have this two mode mixture
model: one mode modeling the first case where the statisti-
cal rendering equation is used, the second mode modeling
the case that it is occluded or transparent:

f(IR) = λfR(IR) + (1− λ) ∗ fH(IR) (19)

where fR(IR) is the statistical rendering equation (4),
fH(IR) is the probability density function for the color
value of the occluding foreground and background. Here we
assume all the voxels share the same H distribution, which
is represented with a histogram. Since it is a mixture of
Gaussian and H distribution, we refer to it as MOGH.

To estimate voxel color distributions, some general
prior knowledge of the distribution of the variance of the
color intensity is assumed. Specifically we assume that
change of the color variance falls into the Rayleigh distribu-
tion. Rayleigh distribution is related to normal distribution
through the fact that: The magnitude of a vector, whose
components are normal distributed, is Rayleigh distributed.
So for the square-root quantities, such as the standard devi-
ation, it is natural to pick up the Rayleigh distribution.

f(σ;ω) =
σ

ω2
exp(

−σ2

2ω2
) (20)

The Maximum A Posterior (MAP) estimation of mean
and variance of the color is formulated as:

{µ∗, σ∗} = arg maxµ,σ f(σ;ω)f(X|µ, σ)
= arg maxµ,σ σ

ω2 exp(−σ
2

2ω2 )∏M
j=1(λ 1√

2πσ
exp{−(xj−µ)2

2σ2 }
+(1− λ)fH(x))

(21)

Figure 5. Experiment on dinoSparseRing data-set: (a, b, c) 3 out
of 16 input images; (d, e, f) reconstructed surface mesh model

Figure 6. Experiment on templeSparseRing data-set: (a, b, c) 3 out
of 16 input images; (d, e, f) reconstructed surface mesh model

where X is the set of observations in different images for
each voxel. The MAP solution can be computed through
the Expectation-Maximization (EM) algorithm.

4. Experiments

Here we first show some experiments on the middlebury
standard data-set [17], which is publicly available at [2].
In all the experiments, the parameters are set as αu = 6,
αp = 8, ω = {4, 4, 4}. These parameters are selected man-
ually (ideally should be learned over a large data-set) and
are kept the same for all experiments. Better parameters
should be selected through extensive search of the parame-
ter space or through learning. For the dinoSparseRing data-



Figure 7. Experiment on kermit data-set: (a,b,c,d) 4 out of 11 input images; (e) point cloud generated by bundler software; (f,k) rendered
mesh model in two different views; (g–j, l–o) rendered images in different novel views;

set, the volume size is 283x238x238. And it takes 47 min-
utes on a 3.0 GHz CPU with 100 iterations. Fig. 5 shows 3
out of 16 input images in the first row, and the reconstructed
surface shape in the second row. From which we can see
that the surface is reconstructed fairly good. For the tem-
pleSparseRing data-set, the volume size is 376x176x241,
and it takes 52 minutes. Fig. 6 shows the reconstruction
results for the templeSparseRing data-set. Quantitatively it
is better than other volumetric methods, and competitive to
the state-of-the-art feature based methods, e.g. [5]. Quanti-
tative comparison with other methods is posted on the eval-
uation website http://vision.middlebury.edu/
mview/eval/.

Next we test the algorithm on another data-set, ker-
mit, which is provided by the bundler structure from mo-
tion software [1]. Fig. 7(a-d) shows 4 out of 11 input
images. The cameras are calibrated automatically from
these 11 images with bundler software. Fig. 7(e) shows the
point cloud that bundler generates. We use the bounding-
box of these point cloud as the volume for our reconstruc-
tion. In the experiments, the resolution for this model is
360x320x140. The running time is 34 minutes on a 3.0 GHz
CPU. Figs. 7(f-o) show our reconstruction results in differ-
ent views, rendered mesh, and rendered images. There are
several interesting parts worth paying attention to. First the
shape of the texture-less coat is reconstructed fairly well,
and the flat region of the book is also good (see image(o)).
Also pay attention to image (i), which shows the reconstruc-
tion of the thin, flat price tag.

Figure 8. Experiment on elephant data-set: (a) one of the 22 input
images; (b, c) rendering of the reconstructed model

Next we show another two experimental results to
demonstrate the system’s capability to reconstruct complex
objects in cluttered background. These datasets were cap-
tured casually with a consumer camera, and all the images
are calibrated with the bundler software. Fig. 8 shows the
reconstruction of a wood-carved elephant, with the holes
reconstructed nicely (see Fig. 8(c).) Fig. 9 shows the recon-
struction of a out-door shiny statue. The result is faily good,
considering the relfective nature aof the statue surface and
the cluttered background of the scene. All the above recon-
structed are performed completely automatically.

5. Discussion

This paper has proposed a novel approach for multiview
stereo based on a MRF model with ray-cliques modeling
the image formation process. With a multi-view image gen-
eration probabilistic mixture model, and optimized belief
propagation, the MRF model can be inferred efficiently. Pri-
mary experiments demonstrate the quality, speed and gen-



Figure 9. Experiment on statue data-set: (a) one of the 29 input
images; (b, c, d) rendering of the reconstructed model

eral applicability of the proposed approach. By directly
modeling the image generation process, the framework is
general to tackle multi-view reconstruction problems under
general conditions. To get full understanding and estimation
of the power and limitation of this approach, more study
and experiments are under way. In this paper, we have as-
sumed simplified statistical rendering model. Extending it
to more detailed statistical rendering models, e.g., putting
BRDF into the model, would give us better accuracy and
reveal more information from images. In the paper, a grid
of voxels are used to represent a volume space. Consider-
ing the fact that most of the space is either totally empty or
solid, hierarchical sparse data structures like octree can be
deployed to save both memory and computation. This paper
solves the hard occlusion problem in multi-view stereo with
a principled way, which could have implications beyond the
problem domains of multiview stereo, where occlusion in-
ference is required. We expect to see more developments of
this approach in other applications.
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