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Abstract

This paper presents a complete solution to estimating a
scene’s 3D geometry and appearance from multiple 2D im-
ages by using a statistical inverse ray tracing method. In-
stead of matching image features/pixels across images, the
inverse ray tracing approach models the image generation
process directly and searches for the best 3D geometry and
surface reflectance model to explain all the observations.
Here the image generation process is modeled through vol-
umetric ray tracing, where the occlusion/visibility is exactly
modeled. All the constraints (including ray constraints and
prior knowledge about the geometry) are put into the Ray
Markov Random Field (Ray MRF) formulation, developed
in [10]. Differently from [10], where the voxel colors are
estimated independently of the voxel occupancies, in this
work, both voxel occupancies and colors (i.e., both geom-
etry and appearance) are modeled and estimated jointly in
the same inversey ray tracing framework (Ray MRF + deep
belief propagation) and implemented in a common message
passing scheme, which improves the accuracy significantly
as verified by extensive experiments. The complete inverse
ray tracing approach can better handle difficult problems
in multi-view stereo than do traditional methods, includ-
ing large camera baseline, occlusion, matching ambigui-
ties, color constant or slowly changing regions, etc., with-
out additional information and assumptions, such as ini-
tial surface estimate or simple background assumption. A
prototype system is built and tested over several challeng-
ing datasets and compared with the state-of-the-art systems,
which demonstrates its good performance and wide appli-
cability.

1. Introduction

This paper addresses the problem of capturing 3D geom-
etry and appearance from multiple 2D images taken from
different views, which has wide applications in virtual real-
ity, entertainment, human-computer interface, surveillance,
navigation, and high-level vision tasks (e.g., visual track-
ing, classification, recognition, scene analysis for robotic
task accomplishment), etc. As an extension of stereo recon-
struction, the multi-view stereo problem is complicated by
the following factors. i) ambiguity of matching. Most al-
gorithms discard homogeneous regions and leave holes in
the reconstruction. More complete reconstructions are to

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. From left to right: (a, b) two out of 29 cluttered in-
put images; (c, d) side and top views of the oriented point cloud
from PMVS2 [5]; (e, f) textured and non-textured models from
PMVS2+PoissonRecon [7]; (g, h) textured and non-textured mod-
els from our multi-view reconstruction algorithm

estimate the region based on the visibility constraints and
regularity of the surface geometry. ii) occlusion. In com-
plex environments, there are strong occlusions between ob-
jects and within objects (self-occlusion). While the effect
of occlusion is not obvious in small-baseline stereo, it be-
comes important for the accuracy and completeness of the
reconstruction in multi-view stereo, where the baseline be-
tween two views can be large. iii) surface topology. The
topology of natural scenes can be very complex, e.g, flow-
ers, trees, compared with planar buildings. iv) background
and transient clutter. Many algorithms require a good ini-
tial surface estimate, usually gotten from object silhouettes.
In the presence of the background clutter, it is not easy to
extract silhouettes reliably. Most multi-view stereo algo-
rithms also assume the scene is static. However in many
applications, moving objects come and go, such as pedes-
trians and vehicles on a street, visitors in a museum, etc.
They can completely confuse the reconstruction algorithm
or lead to ghost effects.

In the last decades, large numbers of research pa-
pers have been published on addressing these problems.
These approaches can be broadly categorized into three
classes based on the adopted 3D geometric representations:
feature-based point cloud approach, surface evolution ap-
proach, and volumetric approach. 1) The feature-based
point cloud approach implements the pipeline of feature ex-
traction — feature matching — triangulation. There are
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two popular variants of this approach, depth fusion and
feature expansion. Depth fusion is a direct extension of
stereo reconstruction. The depth maps from stereo pairs
are merged to remove redundant and noisy points, result-
ing in a clean point cloud, from which a surface can be re-
constructed [2, 9]. Another successful feature-based point
cloud reconstruction method is the feature expansion ap-
proach, represented by the work of Furukawa and Ponce [5].
The feature expansion approach starts from a set of sparse
feature matchings, and then the matchings are propagated
to their neighbor pixels and refined to create a dense re-
construction. In the feature-based approach, the occlu-
sion is handled sub-optimally, by either cross-checking as
in stereo, or visibility filtering [5]. This approach works
well for textured objects, for example buildings, but can-
not handle textureless objects and objects of complex ge-
ometry, e.g., Fig. 9. The output of this approach is a set
of unconnected points, which can be connected to form
a mesh by some meshing algorithms, e.g., Poisson recon-
struction [7]. But due to the irregularity of the point cloud
and loss of information in the point cloud representation,
the recovered shape could have incorrect shape and topol-
ogy (See Fig. 1). In general, the feature-based approach
can handle background and transient clutter easily. 2) The
iterative surface approach adopts a surface representation
of the scene, either explicitly with a mesh [3] or implic-
itly with a level set function [4, 6]. This approach starts
from an initial surface, and iteratively refines it to increase
its consistency with observed images. The convergence of
the local refinement highly depends on the quality of the
initial surface, which has become the main disadvantage of
this approach. The background and transient clutter com-
plicate the problem further by making the silhouettes hard
to extract in these cases. 3) Volumetric methods work with
occupancy volume directly, which can be easily converted
to mesh surface representation if needed. Based on how to
handle the visibility, these methods can be categorized into
two groups: one relies on an initial surface to compute the
visibility, and is represented by the graph cuts based meth-
ods [15, 17]; the other does not assume any prior visibility
knowledge, and is represented by the work on space carving
and its probabilistic variants [12, 8, 1]. Similarly to the sur-
face evolution approach, the graph cuts based approaches
also require an initial shape to estimate the visibility of each
voxel, which strongly limits its general applicability. The
space carving and its variants are general to handle large
varieties of scenes. Due to the adopted greedy solution, it
has not produced reconstruction with good geometry accu-
racy.

Different from most of the above approaches, Liu and
Cooper [10] tackled the problem by first modeling the im-
age generation process directly and then searching for the
best model to explain these observations. That is, the multi-
view stereo is treated as an inverse problem: instead of solv-
ing the reconstruction problem directly, all the constraints
are first modeled, and 3D reconstruction is solved as finding
the best model that satisfies all the constraints. In [10], the
formulated optimization problem is solved with a hybrid ap-
proach: the geometry, modeled with voxel occupancies, is
estimated by solving an MRF inference problem, given the

notation meaning
Ω the set of voxels indices
N voxel pair-wise neighborhood
xi vector variable for the ith voxel in the volume
xo

i occupancy component of voxel variable xi

xc

i RGB color component of voxel variable xi

xri vector variable for ith voxel on the ray r
xo

ri occupancy component of voxel variable xri

xc

ri RGB color component of voxel variable xri

Xr the set of variables for the voxels on the ray
Mo

i→r(x
o

ri) the message from ray r’s ith voxel occupancy
variable to the ray clique, i.e., Mxo

ri
→r(x

o

ri)
Mo

i→r normalized voxel occupancy to ray message
i.e., Mo

i→r(1)−Mo

i→r(0)
Mo

r→i(x
o

ri) the message from ray clique r to its ith voxel
occupancy variable, i.e., Mr→xo

ri
(xo

ri)
Mo

r→i normalized ray to voxel occupancy message
i.e., Mo

r→i(1)−Mo

r→i(0)
Mc

r→i the message sent from ray clique r
to the its ith voxel’s color variable

Table 1. Notations

voxel colors; and the voxel colors are estimated separately
with a statistical robust estimation method. In this paper, we
show that both voxel occupancies and colors (i.e., geome-
try and appearance) can be modeled and estimated jointly
with a message passing algorithm, which significantly im-
proves the reconstruction accuracy of both geometry and
appearance. The voxel occupancy estimation algorithm in
[10] is also reformulated to compute the intermediate terms
that are shared with the color estimation algorithm devel-
oped later. Another improvement on accuracy is achieved
through more accurate modeling of the ray-voxel intersec-
tion relationship. To achieve sub-voxel accuracy, the ray-
voxel intersection relationship is improved from binary to
fractional, and the ray is more accurately modeled with a
cone instead of a line.

2. Multi-View Stereo as an Inverse Ray Tracing
Problem

2.1. Volumetric Ray Tracing

In statistical inverse ray tracing, a volumetric 3D model
X is estimated from a set of image observations {I} by
modeling the prior P (X) and the image generation process
P ({I}|X). Here the volume is divided into a set of voxels,
so X represents the whole set of voxel variables {xi}, with
each voxel variable xi having two components, binary oc-
cupancy xo

i (value 0 for empty, 1 for solid) and RGB color
xc
i . To model P ({I}|X), i.e., the process of generating im-

age observations given a 3D model, we use the volumetric
ray tracing. By volumetric ray tracing (here, the special
case, volumetric ray casting), we know that the observation
of each ray depends only on the voxels that the ray passes
through. Here we use Xr to denote the set of voxels ray
r passes through. The voxels are in the ray traversal order
starting from the viewer. Similarly, Xo

r and Xc
r , respec-

tively, denote the occupancies and colors of Xr. By vol-
umetric ray tracing with a Lambertian model, the ray r’s
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rendered value can be computed as

Υr(Xr) =







xc
r1, Xo

r = 1,×,×,×,×, · · ·
xc
r2, Xo

r = 0, 1,×,×,×, · · ·
· · ·
xc
ri, Xo

r = 0, · · · , 0
︸ ︷︷ ︸

i−1

, 1,×, · · ·

· · ·

(1)

where × denotes either value 0 or 1, Xo
r is a vector of occu-

pancy values for the voxels on the ray r sorted in the traver-
sal order of the viewing ray. Eq. (1) says that the color of the
view ray is equal to the color of the first solid voxel that is
visible along the ray. Hence, Υr(Xr) is a vector of observ-
able voxel colors in ray r conditioned on voxel occupancy
states for ray r.

2.2. Ray Markov Random Field

Define the difference between the rendered value Υr and
observed value Ir as the ray energy:

Er(Xr) = ||Ir −Υr(Xr)||
2, (2)

which measures the 3D model’s consistency with the mea-
sured pixel color.

In [10], a novel MRF model, called Ray MRF, is pro-
posed to model not only the interaction between neighbor
voxels, but also the interaction between voxels in the vol-
ume and pixels in the observed images. The ray energy de-
fined in Eq. (2) determines the ray clique in Ray MRF, mod-
eling the image generation process. Besides the ray clique,
there are two other kinds of cliques in our model: unary
cliques and pair-wise cliques, modeling the prior distribu-
tion of the whole set of voxel variables. Unary voxel occu-
pancy cliques (Eo

uv) model the prior knowledge of voxels’
occupancies (uv stands for ”unary voxel”); pair-wise occu-
pancy cliques (Eo

p) model the continuity of the 3D volume;

pair-wise color cliques (Ec
p) model the spatial smoothness

of voxel colors. Formally, the entire MRF can be expressed
in the following energy form:

E(X) =
∑

r∈R

Er(Xr) + wo
p

∑

〈i,j〉∈N

Eo
p(x

o
i , x

o
j)

+ wc
p

∑

〈i,j〉∈N

Ec
p(x

c
i , x

c
j) + wo

uv

∑

k∈Ω

Eo
uv(x

o
k) (3)

where Er(Xr) is the clique energy for the ray r, and Xr

is the set of voxels that ray r passes through; Eo
p(x

o
i , x

o
j) is

the pair-wise occupancy clique energy, and wo
p is its weight;

Ec
p(x

c
i , x

c
j) is the pair-wise color clique energy, with wc

p be-

ing its corresponding weight; and Eo
uv(x

o
k) is the unary oc-

cupancy clique energy, and wo
uv is its weight. Each energy

function is defined as follows:

Eo
p(x

o
i , x

o
j) =

{
0, xo

i = xo
j

1, xo
i 6= xo

j
(4)

Ec
p(x

c
i , x

c
j) = ||xc

i − xc
j ||

2 (5)

Eo
uv(x

o
k) = (xo

k − 1)2 (6)

Our goal is to find the best 3D model X∗, which mini-
mizes the energy defined in Eq. (3), i.e.,

X∗ = argmin
X

E(X). (7)

3. Voxel Occupancy Estimation

Formulating the image-based 3D modeling problem with
Ray MRF is only the first step, the next and most critical
step is to get an efficient algorithm to compute the maxi-
mum a posteriori (MAP) solution to the Ray MRF model,
i.e., the best 3D model to explain all the image observations.
There are many optimization methods for MAP estimation
of MRFs, including local algorithms such as gradient de-
scent and its variants, sampling methods such as Markov
Chain Monte Carlo (MCMC) sampling, and approximate
algorithms such as loopy belief propagation and graph cuts
(GC), etc. Among them, LBP and GC are two of the most
popular MRF inference algorithms in computer vision for
their good convergence speed and quality. As in [10], LB-
PLBP is used here.

There are three kinds of cliques in Ray MRF: the unary
clique, pair-wise clique, and ray clique. Since the message
from random variable node to its adjoining factor node is
simple and the message passing for the unary and pairwise
clique is similar as traditional MRF, the following study will
focus on the message sent from the ray clique to its partici-
pating voxels, i.e., Mo

r→i(x
o
ri), where xo

ri is the occupancy
variable of the ith voxel on the ray r. Through belief prop-
agation, the message Mo

r→i(x
o
ri) can be computed as:

M
o
r→i(0) = min

Xr :xo
ri

=0





Er(Xr) +

∑

j 6=i

M
o
j→r(x

o
rj)





(8)

M
o
r→i(1) = min

Xr :xo
ri

=1





Er(Xr) +

∑

j 6=i

M
o
j→r(x

o
rj)





(9)

It is a combinatorial optimization problem with n random
variables (the number of voxels a ray passes through is
about 100 − 1000 in normal case). The number of com-
binations is n× 2n (i.e. 100× 2100 – 1000× 21000), which
is too large to enumerate in finite time.

Studies in [10] revealed that there is a “deep factor-
ization” structure of the problem that can be explored
by dynamic programming to solve the large scale com-
binatorial optimization. The final algorithm for com-
puting Mr→i is summarized in Algorithm 1, which
is a reformulation of the algorithm proposed in [10]
to explicitly compute the intermediate variables use-
ful for the color estimation later. In Algorithm 1,

Mo
r [i], E

o
r [i], E

c
r [i], E

o↑
r [i], E∗

r [i], E
∗↑
r [i], E∗↓

r [i] are all in-
termediate temporary variables, some of which will be re-
used later in color estimation.

For now, just pay attention to the computational com-
plexity of the algorithm, by counting the number of “for
loops”: there are 5 sweeps of the voxels on each ray (3 for-
ward sweeps and 2 backward sweeps). That is, the com-
putational complexity is 5n, or O(n). For a clique with n
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Algorithm 1 Message passing from ray cliques to voxel oc-
cupancy variables, i.e., computing Mo

r→i

1: for each ray r do
2: for i = 1 to n do
3: Mo

r [i] = Mo

i→r

4: Eo

r [i] = min(0,Mo

r [i])
5: Ec

r [i] = (Ir − xc

ri)
2

6: end for
7: Eo↑

r [n] = 0
8: E∗

r [n] = Ec

r [n] +Mo

r [n]
9: for i = n− 1 to 1 do

10: Eo↑
r [i] = Eo↑

r [i+ 1] + Eo

r [i+ 1]
11: E∗

r [i] = Ec

r [i] +Mo

r [i] + Eo↑
r [i]

12: end for
13: E∗↑

r [n] = ∞

14: for i = n− 1 to 1 do
15: E∗↑

r [i] = min(E∗↑
r [i+ 1], E∗

r [i+ 1])
16: end for
17: E∗↓

r [1] = ∞

18: for i = 2 to n do
19: E∗↓

r [i] = min(E∗↓
r [i− 1], E∗

r [i− 1])
20: end for
21: for i = 1 to n do
22: Mo

r→i(0) = min(E∗↓
r [i]− Eo

r [i], E
∗↑
r [i])

23: Mo

r→i(1) = min(E∗↓
r [i]− Eo

r [i], E
∗
r [i]−Mo

r [i])
24: Mo

r→i = Mo

r→i(1) - Mo

r→xi
(0)

25: end for
26: end for

binary random variables, the direct implementation of belief
propagation takes O(n×2n) number of operations. Here for
optimized message passing of ray-clique, the computation
is reduced to O(n). The dramatic reduction of the compu-
tational complexity changes the Ray MRF inference from
intractable to efficient.

4. Voxel Color Estimation

In the last section, we have discussed the estimation of
voxel occupancies, given voxel colors. Here the focus is
turned to the voxel color estimation, given the voxel occu-
pancies. Then the optimization problem can be solved by al-
ternately estimating voxel occupancies and colors, as shown
in Fig. 2. A natural question arises: can we estimate voxel
colors with a similar approach as the occupancy estimation
by the deep belief propagation? One obvious obstacle to-
wards this direction is that the color is a 3-dimensional real-
valued random variable, instead of binary variable. Treat-
ing it as a discrete variable is also problematic, because the
number of states is too large (2563 = 16777216). In [10],
voxel colors are estimated through a robust statistical es-
timation method, independent of voxel occupancies. The
problem with this approach is that the color estimation is
sub-optimal and it requires another parameter related to the
color variance across images. Another possible solution is
to use non-parametric belief propagation by approximating
the messages with mixture-of-Gaussians [16]). But is there
a simpler solution?

Figure 2. Alternating estimation of voxel occupancies and colors

Figure 3. Voxel’s visibilities
in different views, given
binary voxel occupancies.
White squares denote empty
voxels; dark squares denote
solid voxels.

Figure 4. Voxel’s visibili-
ties in different views, given
probabilistic voxel occupan-
cies. Darker squares de-
note higher probability of the
voxel being solid.

4.1. Joint Voxel Occupancy and Color Estimation

As shown in Fig. 3, the highlighted voxel is visible in 4
views. Then the marginal mean estimation of the color is
the mean of the color of these 4 visible rays. What does this
mean to our color estimation problem? It means that given
binary voxel occupancies, the voxel color can be estimated
in a closed form. In Ray MRF, the visibility of each voxel
along a ray is measured in probability, as illustrated in 4. It
turns out that given each voxel’s visibility probability along
each ray, the voxel’s color can also be estimated in a closed
form with Gaussian prior distribution. Formally the color
of a voxel, xc, is estimated as

xc =

∑

r∈Rx
visr(x)Ir

∑

r∈Rx
visr(x)

(10)

where

visr(x)

=Exo
r(ℓxr+1)

[· · ·Exo
rn

[Pr(0, 0, · · · , 0
︸ ︷︷ ︸

ℓxr−1

, 1, x
o
r(ℓxr+1), · · · , x

o
rn)] · · · ]

=Pr(0, 0, · · · , 0
︸ ︷︷ ︸

ℓxr−1

, 1,×, · · · ,×). (11)

is the mean visibility of voxel x along ray r; Rx is the set
of rays that pass through the voxel x; ℓxr is the index of
voxel x on the ray r; Exo

ri
[·] is the probabilistic expecta-

tion operator with respect to the occupancy variable xo
ri,

Pr(x
o
r1, · · · , x

o
rn) is the joint probability of the voxel oc-

cupancy variables on the ray r.
The maximal estimation of the color is computed as

xc∗ =

∑

r∈Rx
vis

∗
r(x)Ir

∑

r∈Rx
vis

∗
r(x)

(12)
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(a) ray-voxel relationship (b) message passing
from r to x

o

r2

Figure 5. Toy ray-clique example

where

vis
∗
r(x)

= max
xo
r(ℓxr+1)

{· · ·max
xo
rn

{Pr(0, 0, · · · , 0
︸ ︷︷ ︸

ℓxr−1

, 1, x
o
r(ℓxr+1), · · · , x

o
rn)} · · · }

=P
∗
r (0, 0, · · · , 0

︸ ︷︷ ︸

ℓxr−1

, 1,×, · · · ,×). (13)

is the maximal visibility of voxel x along ray r. To
be consistent with the occupancy estimation, we choose
to stick with the maximal estimation, instead of the
mean estimation, for the later derivations. How do we
compute the maximal visibilities? Recall that in belief
propagation, we can compute not only each variable’s
marginal/maximal distribution, but also a group of vari-
ables’ joint marginal/maximal distribution, or more accu-
rately speaking, a clique (or factor)’s marginal distribution.

Toy Example: A toy example Er(xr1, xr2, xr3, xr4)
(Figs. 5) is used to show the essential ideas. The maximal
visibility of the 2nd voxel can be computed as

P
∗
r (0, 1,×,×) =

e−E∗
r (0,1,×,×)

e−E∗
r (×,×,×,×)

(14)

where E∗
r (0, 1,×,×) is computed as

E
∗
r (0, 1,×,×)

= min(E
∗
r (0, 1, 0, 0), E

∗
r (0, 1, 0, 1), E

∗
r (0, 1, 1, 0), E

∗
r (0, 1, 1, 1))

= min






Er(0, 1, 0, 0) + M
o
2→r,

Er(0, 1, 0, 1) + M
o
2→r + M

o
4→r,

Er(0, 1, 1, 0) + M
o
2→r + M

o
3→r,

Er(0, 1, 1, 1) + M
o
2→r + M

o
3→r + M

o
4→r






= Er(0, 1,×,×) + M
o
2→r + min(0,M

o
3→r) + min(0,M

o
4→r)

(15)
E∗

r (×,×,×,×) is computed as

E
∗
r (×,×,×,×)

= min
{
E

∗
r (1,×,×,×), E

∗
r (0, 1,×,×), E

∗
r (0, 0, 1,×), E

∗
r (0, 0, 0, 1)

}
.

(16)
General Case: For the case with n voxels on a ray,

the maximal visibility of the ith voxel along a ray can

be computed as following. Denote vis
∗i
r = P ∗i

r =
P ∗
r (0, 0, · · · , 0
︸ ︷︷ ︸

i−1

, 1,×, · · · ,×). The associated maximal en-

ergy distribution of the ith voxel along the ray is E∗i
r =

E∗
r (0, 0, · · · , 0
︸ ︷︷ ︸

i−1

, 1,×, · · · ,×). It can be computed as

E
∗i
r = E

i
r + Mi→r +

n∑

j=i+1

min(0,Mj→r). (17)

Denote E∗0
r = E∗

r (×, · · · ,×). It can be computed as

E
∗0
r = E

∗
r (×, · · · ,×) = min

i=1,··· ,n
E

∗i
r . (18)

Then the maximal visibility of the ith voxel along ray r can
be computed as

P
∗i
r =

e−E∗i
r

e−E∗0
r

= e
−(E∗i

r −E∗0
r )

. (19)

A good news is that E∗i
r has been computed during the oc-

cupancy estimation in Algorithm 1 (the term E∗
r [i] in line

11), which can be re-used here.

4.2. MessagePassing Algorithm for Color Estima
tion

The above operation can also be implemented with a
message passing scheme. Denote M c

r→i as the message sent
from the ray r to voxel color variable xc

i . Note that the mes-
sage M c

r→i is not a distribution as in the belief propagation.
It has two values: visibility of the voxel xri on the ray r,
and ray color Ir weighted by the visibility, i.e.,

M
c
r→i := (vis

∗i
r , vis

∗i
r ∗ Ir). (20)

The value of each voxel color can be computed by accumu-
lating the messages received from all the rays that passes
through the voxel:

x
∗c

=

∑

r∈Rx
Mc

r→ℓxr
[2]

∑

r∈Rx
Mc

r→ℓxr
[1]

(21)

where M c
r→ℓxr

[1] and M c
r→ℓxr

[2] denote respectively the first

and second value of the 2-d vector M c
r→ℓxr

. With this mes-

sage passing implementation of both occupancy and color
estimation, the voxel updating is totally parallel with the
ray, i.e., the message passing for rays can be computed
in parallel. The above voxel color updating algorithm is
summarized in Algorithm 2. The system diagram in Fig. 6
shows the whole information flow from the input images to
the final surface mesh.

Algorithm 2 Computing the message from ray clique to
voxel variables (including both occupancy and color), i.e.,
computing Mo

r→i and M c
r→i

1: for each ray r do
2: compute the occupancy messages as in Algorithm 1.
3: E∗0

r = ∞

4: for i = 1 to n do
5: E∗0

r = min(E∗0
r , E∗

r [i])
6: end for
7: for i = 1 to n do
8: vis

∗
r [i] = e−(E∗

r [i]−E
∗0
r );

9: Mc

r→i = (vis∗r [i], vis
∗
r [i] ∗ Ir)

10: end for
11: end for
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Figure 6. System diagram of the complete inverse ray tracing approach to multi-view stereo
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Figure 7. Convergence behavior of the proposed algorithm: the
change of Ray MRF’s normalized energy as the number of itera-
tions increases.

4.3. Algorithm Convergence

The theoretical convergence property of the proposed al-
gorithm is yet to be studied. Here its typical convergence
behavior is reported empirically1. Fig. 7 shows the change
of the normalized energy (defined as the whole Ray MRF
energy divided by the number of rays) with respect to the
number of iterations. It can be seen that the energy de-
creases exponentially and the algorithm converges in about
10-20 iterations.

5. Experimental Results

The above developed algorithm for multi-view stereo is
evaluated through a variety of datasets2, reflecting differ-
ent challenges in multi-view stereo and how our system re-
sponds to them. The performance of the proposed algorithm
is compared with [10] and one of the state-of-the-art multi-
view stereo algorithms, PMVS2 [5].

5.1. Horse Dataset (horse29)

Horse dataset is composed of 29 images, captured in a
rough circle around a 6-meter tall horse statue. During cap-
ture, the camera is pointed upwards because of the height of
the statue. Fig. 1 (a, b) show two of the 29 input images. It

1The experiment is conducted on the kermit dataset, which is provided
by the Bundler software package [13], and has been used in [10] as a recon-
struction example. It consists of 11 VGA-resolution images taken under
normal indoor lighting.

2In these datasets, the images are captured with fixed normal light-
ing, auto-focused and fixed exposure settings (including aperture, shutter
speed and ISO-value). The native resolution of the captured images is
4272x2848, which is used for the camera calibration with Bundler soft-
ware [13, 14]. Then the images are resized to 641x427, for 3D reconstruc-
tion.

(a) Results from [10]: two views of textured and non-textured model

(b) Our results: two views of textured and non-textured model

Figure 8. Comparison between [10] and our system on horse29
dataset

Figure 9. Two sample images of the elephants40 dataset

Figure 10. PMVS2’s oriented point cloud output

can be seen that the horse scene is cluttered with trees and
buildings in the background. Without silhouette inputs, the
iterative surface approach will have difficulty in producing
meaningful result for this dataset.

First our results are compared with results from [10].
Fig. 8 shows two different views of the generated models
from [10] and our system. Although [10] has clearly recov-
ered the object topology from the cluttered input images,
it fails to reconstruct detail on the object. We can clearly
see that the color is blurred, and the geometry is fuzzy. Our
system, by optimizing geometry and appearance jointly, has
reconstructed much more detail, for example, the horse-
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Figure 11. Four different views of the textured and non-textured
models reconstructed by PMVS2 + PoissonRecon

Figure 12. Four different views of the textured and non-textured
models reconstructed by IRAY (our system); the holes on the body
are well reconstructed.

Figure 13. Two sample images of building14 dataset

Figure 14. PMVS2’s oriented point cloud output

rider’s right hand and the horse’s hair are more clearly vis-
ible. From this example, we can see that our improvement
over [10] has significantly improved the inverse ray tracing
approach’s accuracy. In the next few experiments, we fur-
ther demonstrate the advantages of the inverse ray tracing
approach over the other state-of-the-art approaches repre-
sented by PMVS2 [5].

Fig. 1 (c, d) show the dense point cloud generated by
PMVS2. It can be seen that the body part of the horse
is reconstructed densely, while the tops of the horse, the
horse-rider and the statue base are missing because these
regions are not observed in any views from the bottom of

Figure 15. Two different views of the textured and non-textured
models reconstructed by PMVS2 + PoisssonRecon

Figure 16. Two different views of the textured and non-textured
models reconstructed by IRAY (our system); Interesting regions
are highlighted in the last image.

the statue. Fig. 1 (e, f) show the reconstructed surface by
PoissonRecon [7], taking PMVS2’s point cloud as input. It
can be seen that the generated surfaces totally depart from
the true shapes. This is probably because the point cloud is
not evenly sampled around the object, and missing regions
are too large to be filled in reasonably by PoissonRecon.

Fig. 1 (g, h) and Fig. 8 (b) show the reconstruction results
by our system3. Compared with PMVS2+PoissonRecon,
we can see that our system does a much better job of re-
covering the geometry of the horse, horse-rider and statue
base. It has successfully reconstructed the tops of these
objects. Although these regions are not visible from the
bottom, they are confined by the visibility constraints, and
combined with the geometry smoothness prior our system
outputs a reasonable reconstruction of these regions.

5.2. Elephants Dataset (elephants40)

The elephants dataset consists of 40 images taken around
two carved elephants, one made of stone and the other made
of wood. Interestingly, there are many holes in each ele-
phant’s body, and through these holes we can see that each
elephant is “pregnant with her baby”. These two elephants

3The volume resolution is 225x299x150 (about 10M voxels).
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are put on a round plate, and a hand-held camera moves
around the plate from the top. Fig. 9 shows two sample
images.

Fig. 10 shows the reconstruction of a dense point cloud
from four different view angles by PMVS24. It can be seen
that the side parts of the elephants are reconstructed densely,
while the rear parts are almost completely missing, proba-
bly due to the small number of visible views.

Fig. 11 shows textured and non-textured 3D surface
models from four different view angles reconstructed by
PMVS2 + PoissonRecon5. PoissonRecon does a good job
of filling the rear part of the elephants. However, it incor-
rectly fills the holes on the body of the elephants.

Fig. 12 shows the reconstruction results by our system6.
Comparing Fig. 11 and 12, we can see that our approach
can preserve the carved holes correctly, and reconstruct the
baby elephants roughly. The rear parts of the elephants are
reconstructed reasonably. There are because our algorithm
better handles the occlusion relationship and is capable of
reconstructing a region with small number of views. Also
the volumetric representation, as used in our system, con-
tains more geometric information than unconnected points,
which make the surface reconstruction much easier with a
simple iso-thresholding algorithm (e.g., marching cube al-
gorithm [11]), compared with the point cloud based system.

5.3. Building Dataset (building14)

The building dataset consists of 14 images of a build-
ing cluttered by trees and moving vehicles. The images are
captured with a hand-held camera with auto-focus and fixed
exposure setting under normal outdoor lighting condition.
Fig. 13 shows two example images.

Fig. 14 shows different views of the dense point cloud
generated by PMVS2 software. It can be seen that most
parts of the building are reconstructed densely, while the
tree and grass regions of the scene are mostly missing, and
the roof and chimney parts of the building are also missing.
The absence of the tree and grass regions is very likely be-
cause the complex and repeated texture of the region makes
the pixel-wise matching problematic. The missing of the
roof and chimney is possibly due to the occlusion and small
number of visible views. The point cloud generated by
PMVS2 is further fed into the PoissonRecon software to
generate a mesh surface representation. Fig. 15 shows two
different views of the reconstructed surfaces.

Fig. 16 shows the reconstruction results by our system7.
Compared with the PMVS2+PoissonRecon results, we can
see that our system generates a more complete reconstruc-
tion of the scene, including the trees, grass, roof, chimney,
etc. The textured rendering of the reconstructed 3D model
is photo-realistic, while bearing in mind of the limited vol-
ume resolution (186x371x146) used.

4In PMVS2, the default parameters are set to work with high-resolution
images. In the experiments, we modified two of the default parameters:
‘level’ is changed from 1 to 0, and ‘csize’ is changed from 2 to 1, to create
denser point cloud than the default parameters.

5The PoissonRecon runs with parameters: octree depth = 10, solver
divide = 8, samples per node = 1, surface offsetting = 1.

6The volume resolution in the experiment is 371x293x93 (about 10M
voxels).

7The volume resolution is 186x371x146 (about 10M voxels).

6. Conclusion

This paper presents a complete solution to the optimum
multi-view stereo problem based on the statistical inverse
ray tracing method. In this approach, occlusion is mod-
eled accurately and completely; voxel occupancies and col-
ors are estimated jointly with an efficient message passing
algorithm. Compared with point cloud based approaches,
the proposed approach can reconstruct surfaces more com-
pletely and handle sparse cameras. Compared with surface
evolution approaches and graph-cuts based volumetric ap-
proaches, it does not require an initial good surface esti-
mate. Compared with space carving based volumetric ap-
proaches, it optimizes all the ray constraints together and
has faster convergence rate and better geometric accuracy.
The developed prototype system currently can only process
tens of millions of voxels due to the cubic dependency of
the computational and memory cost on the number of vox-
els in each of the three dimensions. In the future, sparse
octree-based volumetric representation will be explored to
reduce the computational cost in order to reconstruct large
scale scenes.
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