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Abstract-. Multiuser detection has gained much attention in by step approximation, based on the steepest descent gradient 
recent years for its potential to greatly improve the capaci- technique. 
ties of CDMA communication systems. In this paper, a re- wireless communication channels are time-vaving 
current neural network is presented for solving the nonlinear rapidly, because of both natural colnlnunicating conditions 
optimization problem involved in the multiuser detection in (like lnultipath fading, mobile terminal moving, etc.) and 
CDMA. ComParedwith 0 t h  neural networks, the Presented random asynchronous access of other interfering users. So 
neural network Can globally Converge to the exact optimal the wireless communication systems are typical real-time 
solution of the nonlinear optimization problem with nonlin- SvStemS. This reouires that the detection methods should 
ear constraints and has relatively IOW structural complexity. adapt the parameteis rapidly 
Computer simulation results are presented to show the opti- 
mization capability. The performance in CDMA communca- 
tion systems is also studied by means of simulation 

achieve good performance, 
Neural network approaches have shown to be able to han- 

dle real-time applications, because of VLSI implementability 
and parallel processing capability [4]. The idea proposed in 

~~ ~~ ~. 
this paper is to employ a recurrent neural network in order to 

adaptive de- accelerate the convergence process ofthe adaptive filter coef- 
ficients towards the optimum solution in the blind detection 

CDMA, Multiuser Detection, 
tection, recurrent neural networks, nonlinear optimization 

algorithm. 
After Hopfield and Tank's seminal work, Kennedy and 

Chua deve1oped.a neural network with a finite penalty pa- 
In wireiess communication systems, Direct-Sequence rameter for solving nonlinear programming problelns [4]. Al- 

Code ~ i ~ i ~ i ~ ~  Multiple.~Access (DS-CDMA) is a promis- though this work actually fullfills both the Kuhn-Tucker op- 
ing technology, with several advantages Over asyn- timality conditions in terms of penalty function, this network 
chronous multiple access, robustness to frequency selective 1s not capable to find an exact optimal solution due to a fi- 
fading, and [I] .  But to nite penalty parameter and is difficult to implement when 
communicating simultanously with high bit rate in 313 mo- the Penalty paralneter is very large. Fantacci, Forti, and et 
bile communication systems, the capacity has to be increased. aL developed a blind detectorlreceiver based on Kennedy 
The capacity of DS-CDMA is limited by signal interfer- and Chua's neural network [ 5 ] .  Kechriotis and Manolakos 
ence, Therefore it can be increased by using techniques [ I  I ]  investigated the application of Hopfield neural networks 
that suppress interference. Many research activities have ( " N ' S )  to the probleln of multiuser detection in spread spec- 
been focused on the Multiuser Detection (MUD) techniques trunliCDMA (code division multiple access) communication 
[11[21. Among them, blind detection is the most promis- systems. Recently, Xia and Wang proposed 3 recurrent neural 

I. INTRODUCTION 

a high number of 

~ ~~ ~ - 
ing one because it requires no more knowledge than does 
the conventional single-user detection: the desired user's sig- 
nature waveform and its timing. The blind detection tech- 
niques turns the MUD problem to a constrained nonlinear op- 
timization of the objective function Minimum Output Energy 
(MOE). Based on this, Verdu proposed the adaptive blind de- 
tection which gives an adaptive solution to the nonlinear op- 
timization to reduce the computation complexity [3]. As the 
cost, adaptive blind detection needs for a certain number of 
bit intervals to reach the optimal solution, since the path to- 
wards the optimum filter coefficients set is performed in a step 

network that can solve nonlinear convex optimization prob- 
lems [ 6 ] [ 7 ] .  Xia and Wang's neural network is stable in the 
sense of Lyapunov and globally convergent to the exact opti- 
mal solution. Applying Xia and Wang's neural network, we 
proposed a neural network approach to blind multiuser detec- 
tion. The simulation results show that it is efficient in blind 
detection of CDMA. 

The rest of this paper is organized as follows. In Sec- 
tion II., we briefly review the DS-CDMA communication 
system and derive the formulation for blind detection. In Sec- 
tion III., we present the neural network architecture. Simu- 
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lation results are reported in Section Iv.. Finally, Section v. 
concludes this paper. +% b-I 

T un(t) cl(t) Syn 1 ' 

11. PROBLEM FORMULA~ON 
bz 

Multiaccess communication, in which several transmitters 
share a common channel, is common nowadays, like mo- : . _ .  
bile communication systems, satellite communication sys- 

those communication channels is that the receiver obtains a 

bK 

CK(t) Syn 
terns, packet-radio networks, and etc. A common feature of 'Y 

AKSK(t) 
noisy version of the superposition of the signal sent by active 
transmitters. How to detect the desired signal is important for 
these communication systems. 

The conventional DS-CDMA system treats each user as 
signal, with other users considered as noiae or MA1 (Mulit- 
pie Access Interference). This technique has several inher- 
ent shortcomings. Simply considering other users as noise 
makes the capacity interference-limited. For the same reason 
the near/far effect is very serious, so the system needs good 
power control [I]. 

To solve these problems, the Multiuser Detection (MUD) 
method was proposed by Verdu. MUD considers all users as 
signals when detecting a particular user signal; so this is a 
joint detection (in comparison to the sperate detection disuc- 
ssed previous). This technique can reduce interference and 
hence lead to increase capacity. At the same time it alleviates 
the neadfar problem. 

The optimum multiuser detector for asynchronous 
mulitple-access Gaussian channels is discussed in [ I ]  
where it is shown that the nearlfar problem suffered by the 
conventional CDMA receiver can be overcome by a more 
sophisticated receiver which accounts for the presence of 
other interferers in the channel. This receiver is shown to 
attain essentially single-user performance upon knowing the 
following [Z]: 

Q The signature waveform of the desired user. 

Q The signature waveform of the interfering users. 

0 The timing of the desired user. 

@ The timing of each interfering user 

0 The received relative amplitudes of the interfering users 
to that of the desired user. 

The conventional receiver only requires 0 and 0, but it is 
severely limited by the near/far problem, even in the presence 
of perfect power control, the bit-error-rate is orders of mag- 
nitude far from optimal. 

To alleviate the need to know interferers' signature Q, tim- 
ing @, and amplitudes 0, some attention has been focused 
recently on adaptive multiuser detection. The adaptive mul- 
tiuser detector in [3] is based on the minimization of mean- 
square-error (MMSE) between the outputs and the data. But 

Figure 1: Simplified K-user DS-CDMA Synchronous Communi- 
cation Model 

it needs traing data sequences for each user to approximate 
the unknown parameters. However, at any time there may be 
a drastic change in the communication environment (e.g. a 
deep fade or the access of other interfering users), at this time 
the parameters becomes unreliable. Then data transmission 
of the desire user must be temporarily suspened and a fresh 
training sequence must be retransmitted. Thus retransmit- 
ting of the training sequence is cumbersome in most CDMA 
systems, where one of the most important advantages is the 
ability to have completely asynchronous and uncoordinated 
transmissions that switch on and off autonomously. 

The foregoing observation implies that the need for blind 
adaptive receivers is even more evident in multiaccess chan- 
nels than in single-user channels subject to intersymbol inter- 
ference. 

The formulation of blind adaptive multiuser detection is 
discussed as follows. 

Let's consider the DS-CDMA systems as illustrated in Fig- 
ure 1, where bk € {-I, 1) is the bits to be transmitted, Sk(t) 
is the kth user's signature waveform, Ak is the modulation 
amplitude, un(t)  is the additive Gaussian white noise, r(t)  
is the received signal, and Ck(t) is the matched filter coeffi- 
cients. The commonly used objective function to be mini- 
mized in multiuser detection is: 

MMSE(ck(t)) = minE[(bk - (Ck(t),r(t)))'] 

where (ck(t), r( t))  = J: ck(t)r(t)dt, ck(t) is the waveform 
used to demodulate r(t). The output decision is 

er. 

b;, = sgn[(ck(t)lT(t))l 

It can be proven that the solution of this optimization problem 
has no relation with bk. 
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For simplicity, we will concentrate on the first user only 
from now. The canonical representation of linear MMSE is 

c l ( t ) = s l ( t ) + z l ( t ) ,  and(s l ( t ) , z l ( t ) )  - 0  

Define Mean Output Energy of user 1 as 

M w z l ( t ) )  = El((r(t), s1(t) + zl(t)!)Z1 

Then 

MSE(sl(t)) = E[(Albi - ( r ( t ) , s l ( t )  + zi(t)))'l 
= A :  +MOE(zi( t ) )  - 2Al(s l ( t ) , s l ( t )  +z l ( t ) )  
= MOE(Zi(t)) - At 

So the solution of MMOE is also the solution of MMSE. 
While MMOE has no nothing to do with b k ,  then the detec- 
tion problem evolves to the following form: ' ' 

min MOE(zl(t)) = E[((r(t),sl(t) + a ~ ( t ) ) ) ~ ]  
S.t. (Sl( t ) ,2l( t ) )  = 0 

Because the received signature dl is not always the same as 
SI, so we need to add the surplus energy constraints [3]: 

/ l~ l ( t ) l IZ  < x 
where x is the surplus energy which is a positive constant. 
So the formulation for Blind MMOE Detector with surplus 
energy constraints can be expressed as follows, 

min MOE(zl(t)) = E[( ( r ( t ) ,  s l ( t )  + zl(t)))'] 
S.t. (Sl(t),zl(t)) = 0 ,  (1) 

llz1(t)Il2 5 x 
It is proven that MOE(z1) is a convex function [l]. 

The nonlinear optimization problem ( I )  is a general form. 
Particularly, when the signature waveforms s ~ ( t ) ,  ( k  = 
1, . . . , K )  are binary PN sequences, the vector form of (I)  
is as follows. 

min MOE(zl) = E[(@, s1 + zl))'] 
s.t. (s1,21) = 0 ,  (2) 

11~1112 5 x 
where 2 1 ,  sl, y1 E R", n is the number of chips per bit for 
the PN sequences. From now on, we will design the neural 
network based on formulation (2). 

111. NEURAL NETWORK ARCHITECTURE 

Problem (2) can be generalized to the following formula- 
tion: 

rnin f(u) 
S.t. g(u) 5 0 (3) 

h(u) = 0 

where, U E R", f(u),g(u), h(u) are scalar functions. 

In [7], Xia and Wang developed a neural network for solv- 
ing the following nonlinear optiinization problem with in- 
equality constraints. 

min f(u) 
s.t. .(U).< 0, 21 2 0 

In addition in [6], Xia and Wang developed a neural net- 
work for solving the following nonlinear optimization prob- 
lem with both equality and inequality constraints. 

min $uTQu + qTu 
s.t. g(u) < 0, GTu = -f ert 

Following these design methods, here we present a recur- 
rent neural network for solving the nonlinear program (3). 
For complete proof, please refer to [6][7]. 

To derive a neural network model for solving (3),  we first 
give a equivalent form of (3 ) .  

Vf(0) + vVg(u) - wh(u)  = 0,  
(U +g(u))+ - w = 0 ,  (4) { h(u) = 0,  

where zi E R, w E R are both auxilialy one-dimensional 
variables. 

It can be derived as follows. First define the Lagrangian 
function 

q u ,  U, w) = f(.) + vg(.) - wh(u) 

According to the well-known saddle point theorem [SI, U* is 
a solution to ( 3 )  if and only if there exists U' E R+ and w' E 
R,suchthatforany(u,w,w) E R n x R + x R , ( u * , u * , w * )  
satisfies 

L(U* , z i ,UJ)  5 L(U*, IJ* ,W*)  5 L ( U , V * , W * )  

where R+ = {U E R 1 w 2 0). Then we can get 

L(ZL*,U,O)  5 L ( U ' , V * , W * )  5 L(u,v',w') 

Because h(u*) = 0, so 

f(.*) +us(.') 

f(u) + u*g(u)  - w*h(u) 
5 f(.') + u's(u') 
5 

From the first inequality above, we can derive that 

(U - w*)[-g(u*)) 2 0,  Vu 2 0 

On the other side, let 

$(U) = f(4 + IJ*g(4 - N u )  

Then the right inequality above implies: 

@ ( U )  L $(U*),  VU E R" 
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this means, 

that is, 
V 4 ( 7 l * )  = 0 

V f ( U * )  + v * V g ( u * )  - W * V h ( U * )  = 0 

so, U* is a solution to (3), if and only if (U' ,  U', w') satisfies 

of ( . " )  + v * V g ( u * )  - w * V h ( u * )  = 0 

h ( u * )  = 0 
( u  - u * ) ( - g ( u * ) )  2 0 ,  vu  2 0 

( 5 )  
{ 

: ( g  =.( - M U )  

;(:) ( 

From the projection theorem [9], it can he seen that the above 
formulation is equivalent to (4). 

Based on the equivalent formulation in (41, we propose a 
recurrent neural network for solving ( 3 )  with its dynamical 
equation given by 

(6) 
1 -of( .)  - v V g ( u )  + w V h ( u )  

(U + g ( u ) ) +  - 21 

where X is a positive scaling constant. 

to the exact optimal solution [6][7]. 

be defined by the following dynamic state equation. 

The neural network is guaranteed to be globally convergent 

Now for the problem (2), the specific neural network can 

- 2 E [ P ( z l  + S I ) T ]  - ~ V Z I  - WSI 

= x (v + lIZlllZ - X)+ - 2) 
-STXI 

(7) 
wherezl , ' s l , r  E R",nisthenumberofchipsperbit. zi E R, 
w E R, A > 0 is a scalar parameter. 

In [ 5 ] ,  R. Fantacci, et al. also investigated the neural net- 
work approach to solve the problem (2). They proposed a 
recurrent neural network with nonobvious modification of 
Kennedy and Chua's neural network [4]. It can be defined 
by the following equation. 

i1 = -GI] - V V ( Z I )  + ( V V ( Z I ) , S I ) S ~  (8) 
where 

z1 E Rn, G E R+ models the neuron parasitic capacitances, 
and K is the positive penalty parameter. 

IV. SIMULATION RESULTS 

To verify the neural network (8), Fantacci, et al. used the 
following example problem. 

min M O E ( u )  = $U'@ + q'u 
S.t. STU = 0 , 

/lull2 5 x 
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Figure 2: Trajectories of two Neural Networks 

where, 

Q = ( ;  10 '3" 2 1 : ) , q = (  f i i ' ) ,  
-24 

s = ( l  0 O ) T ,  x = 4 ,  U €  R3 

We will also use this problem to demonstrate the optimization 
capability of the neural network (7). 

Figure 2 depicts the contour lines of the objective function, 
and the constraint circle 1 1 ~ 1 1 ~  = U ;  + U: = x = 4. In 
this figure, two simulated trajectories are plotted, separately 
of Fantacci's neural network (8) and of the neural network 
(7) both starting from point (2,4, -1). It can be seen that the 
trajectory of Fantacci's neural network (8) converges toward 
the equilibrium point ue, which is close to the minimum U * ,  

while the trajectory of neural network (7) converges exactly 
toward the optimal point U*.  For Fantacci's neural network 
(8), the accuracy of solution, i.e., the closeness of ue and U* 

depends on the value of the penalty parameter K.  
In Figure 3,  the convergence of u1 with time is illustrated. 

From this figure, it can be easily seen that the neural network 
(7) converges with more accuracy than the Fantacci's neu- 
ral network (8) within the same period of time and under the 
same corresponding parameters. 

The performance of the neural network (7) in a DS-CDMA 
mobile communication systems is also studied by means of 
computer simulation. It shows that the neural network is effi- 
cient in blind adaptive multiuser detection. Compared with 
the classic blind adaptive detector [ 3 ] ,  the neural network 
permits to gain better performance in terms of bit error rate 
(BER). 
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Figure 3: Convcrgcna oful(t) of hvwoNcural Networks 

Figure 4 Total number of errors versus number of bits 

The simulated system uses 31 chips per bit Gold PN se. 
quences [I] as the s i p t u r e  codes. We assume that it is under 
perfect power conbol; ie.,  A I  = A2 = ._ , = AK.  The 
communcation channel is an additice Gaussian white noise 
(A- channel and the signal noise ratio (SNR) is 20dB. 
For brevity, we only detect the first user’s signal. 

Figure 4 depicts the case when only one user is transmit- 
ting in the first 4500 bit time periods, and suddenly 19 other 
interfering users begin t o  tr-it. In this circumstance, the 
communication channel for the first user at 4500 bit interval 
is under a rapid change. As shown in Figure 4, the neural 
network (7) can rapidly adapt its parameters to the optimum, 
while the classic blindadaptive detector needs a few steps for 
its parameters to reach the steady state and therefore in the 
adaptation period the error bit rate (FBR) is muchhigher. 

V. CONCLUSIONS 

Inthispaper, we presentarecurrent neuralnetworktosolce 
the nonlinear optimization problem for multiuser detection in 
CDMA communication systems. The recurrent neural net- 
work is globally convergent to the exact optimal solution. 
Simuhtion results have shown that the recurrent neural net- 
work is effstice for the blind detection, and leads to the ca- 
pacity increase for the CDMA systems. 
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