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Abstract- In this paper, the K-Winners-Take-All (KWTA)
operation is converted to an equivalent constrained convex
quadratic optimization formulation. A simplified dual neural
network, called KWTA network, is further developed for solving
the convex quadratic programming (QP) problem. The KWTA
network is shown to be globally convergent to the exact optimal
solution of the QP problem. Simulation results are presented to
show the effectiveness and performance of the KWTA network.

I. INTRODUCTION
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Fig. 1. The diagram of KWTA operation.

Winner-take-all (WTA) is an operation that identifies the
largest value from the input signals. Such an operation has
many applications including associative memories [1], coop-
erative models of binocular stereo [2], Fukushima's neocog-
niton for feature extraction, and etc [3]. In the combinatorial
optimization, this operation is also needed.
As an extension of winner-take-all operation, k-winners-

take-all (KWTA) selects the k largest inputs from the total
n inputs. It can be considered as a generalized version of
winner-take-all operation. It has recently been shown that
KWTA is computationally powerful compared with standard
neural network models with threshold logic gates [4][5]. Any
boolean function can be computed by a single k-winners-
take-all unit applied to weighted sums of input variables.
Beside the applications in neural network model, the KWTA
operation has important applications in machine learning, such
as k-neighborhood classification, k-means clustering, etc. As
the number of inputs becomes large and/or the selection
process should be operated in real time, parallel hardware
implementation is desirable. There have been many attempts
to design very large scale integrated (VLSI) circuits to do the
KWTA operation [6-13].

This paper proposes a new neural network implementation
of KWTA operation based on the equivalent quadratic opti-
mization formulation, which has the O(N) complexity. For this
network, global convergence is guaranteed and time-varying
signals can be tackled. The rest of this paper is organized
as following. Section II derives an equivalent formulation of
KWTA, which is suitable for neural network design. Section
III introduces the neural network design procedure, architec-
ture and properties. Simulation results are reported in Section
IV. Section V concludes this paper.

This work was supported by the Hong Kong Research Grants Council under
Grant CUHK4165/03E.

II. EQUIVALENT REFORMULATION

The optimization capability of the recurrent neural network
has been widely investigated. After the seminal work of Tank
and Hopfield [14][15], various neural networks have been
proposed. They can be categorized as the penalty-parameter
neural network [16], the Lagrange neural network [17], the
deterministic annealing neural network [18], the primal-dual
neural network [19][20] and the dual neural network [21][22].

Mathematically, KWTA can be formulated as a function

Xi f(vi) = 1, if v2e {k largest elements of v};
i 0, otherwise.

(1)
Fig. 1 shows the KWTA operation graphically. In this section,
we will reformulate the KWTA operation as a quadratic
programming problem, which is suitable for neural network
design. Toward this goal, hereafter two theorems are given
and proved.

Theorem 1: The solution of (1) is the same as the solution
to the following discrete quadratic programming problem (2).

minimize axT - vTx
subject to eTx = k

xiE{0,1}, i=1,2,7** ,n
(2)

where a is a positive constant, v := [v,lv2,''' ,vn]T, x :=

[XlX2oo Xn]T, e :=[1,1,-c , 1]T.
Proof: eTX= k can be written as

n

i=l

Because xi E {0, 1}, we have
2_Xi =-x

(3)

(4)
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From (3) and (4), we get
n

X2 = k

i=l1

i.e.,
n

axTx a x2 ak
i=l1

is a constant.
So the cost function can be rewritten as

maximize vTx

Suppose that the solution of (2) x* is not the solution of (1).
Without loss of generality, we assume that x* = 0, vi in the
top k largest inputs; And xl = 1, vi is not in the top k largest
inputs.

Because vi is in the top kth largest inputs, and vl is not,
then

Vi > VI

Define xi := 1, xl::= 0, x>*j 4 i, 1. x
[x1,x2,*... , ]T also satisfies the constraints.

vTX = ViXt + V, l + EjAi VjXj
= Vi + Ejo#i,l Vjx
> Vk + Ejo$i,I V3iX
= vixt + vilx + Zjoi,I vjx*
= VTx*

This contradicts with the assumption that x* is the solutior
(2).
The proof is complete.
Denote the kth largest element as V5k, (k ± l)th lart

element as ik+1. Then we have the following theorem:
Theorem 2: If '0k -vk+1 > 2a, then the discrete quadr

programming problem (2) and the following continu
quadratic programming problem (5) have the same solutic

minimize axTx - vTx
subject to eTx = k

xiE [0,1], i= 1,2, ,n

where a is a positive constant.
Proof: If we can show that the solution of the prob]

(5) is in the set {0, 1}f, then the theorem is proved.
From the equality constraint eTx = k, we can get

xi= k-E Xj
j$l

Substituting (6) into axTx - vTx, we have

ax xvTx
= a(Z>i X) - Zitin x= (7=1 Xj2-jx=1 VjXj

= a(Z_#i x2 + (k -EjZ x3)2)-
I,, v-xj - vi(k - EjZ , xj)

= a(x±2+*+ X2-2kxi + 2xi Ej i xj;+*)-
Vjxj + VIXI + * *

- 2a4 + (2a I:,,, xj - 2ak + vi - vi)xi +

From the above derivation, we can take axTx - vTx as the
function of variable xi. It can be further written as

aTx-vTx = 2ax±+ (2a E xj -2ak + vi - vi)xi + e(x),
j$Il,i

(7)
where e(x) has nothing to do with xi and xl.

If the following condition is satisfied, axTx-VTx can only
reach its minimum at its boundary, that is xi = 0 or xi = 1.

vi - vl + 2a(k -Ejj',i xj) E (-oo, 0] U [1, oo).
2a

Considering k - >j,01j xi = xi + xl, the condition is
equivalent to

Vi -VI + 2a(xi + xi) E (-oo,0] U [1, oo).
4a (8)

If vi E{k largest elements of inputs}, then we can choose
vl {k largest elements of inputs}. To let xi = 1 and xi = 0,
the following conditions should be satisfied.

Vi -v 4+ 2a(xi + Xi) > 1
4a

and

We can get

VI - vi + 2a(xi + xi) < 0.
4a

xi-xi > 2a.

If vi V{k largest elements of inputs}, we can choose vilk
largest elements of inputs}. In the same way, we can get

xl - xi > 2a.

So, if V5k -Vk+1 > 2a, the solution of problem (5) is in the
set {O, 1}n.
The proof is complete. O
From Theorems 1 and 2, we can easily get that if 5k-

Vk+l > 2a, the solution to the continuous quadratic optimiza-
tion problem (5) is the solution of (1).
Remark 1: Let's consider the solution of problem (5) when

Vk -`k+l < 2a. In this case

vk-vk+l + 2a(xk± k+1) E [0,1].
4a

Then when

Xk =
Vk -Vk+l + 2a(ik + Xk+1)

4a
(6) the cost function reaches its minimum. That is,

k Vk -Vk+1xkxk+1 - 2a
If other elements can be successfully separated, then

Xk +Xk+1 = 1.

(9)

(10)

From (9) and (10), we can get
- -k+ -0 -k+Xk 0.5 + akkk+l 0.5 Vk-bk+l
4a 4a

In particular, if V3k = vk+1, Xk = xk+1 = 0.5.
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III. KWTA NETWORK MODEL
In [21]122], a neural network called dual neural network

is presented to solve convex quadratic problems utilizing the
dual variables. In this section, we will simplify the dual neural
network for solving the quadratic programming problem (5).
Here we call the network as KWTA network. It reduces
the architecture complexity while preserving the desirable
convergence property compared with the dual neural network.

Consider the problem (5) as the primal problem P, then its
dual problem D can be written as

maximize kTy-axTx-eTW2
subjectto aIx - v - ey -Iwl + IW2 = 0 (11)

u >' O

where y E R, w1 E RI, w2 E R' are dual variables.
Define u = Wl - W2, the equality constraints in (11)

becomes
aIx - v - ey - Iu = 0.

By the Karush-Kuhn-Tucker (KKT) conditions for convex
optimization [23], the following set of equations have the same
solution as problem P

aIx-v-ey-Iu=O (12)

eTX = k (13)

where M = (I - eeT/n)/a, s = (Mv + e)/a.
The architecture of the KWTA network is shown in Fig

2. A circuit implementing this network consists of summers,
integrators and operational amplifiers.
The properties of convergence and optimality are studied

below.
Theorem 3: The KWTA network (19) is globally conver-

gent to an equilibrium point u* which depends on the initial
state of the trajectory.

Proof: At u*, we have the following inequality

(v-x*)Tu* > 0,v E Q. (20)
which can be obtained by considering the following three
cases:

. Case 1: If for some i E {1,2, . ,p}, u =0, 0 <x* <
1, then (vi -xi*)ui = 0;

. Case 2: If for some j E {1,2,... ,p}, u* > 0, X* = 0
and 0 < vj < 1, then v;-x > 0 and thus (vj-xj)u* >
0;

. Case 3: If for some k E {1,2,--- ,p}, uZ < 0, x = 1
and 0 <.vk < 1, then vk-X* < 0 and thus (vk-X*)u* >
0.

Therefore, it follows from (20) that

[g(Mu+ s- u)- (Mu* + S)]T u* > 0. (21)

Xi =0°
( Xi = 1

0 <, Xi < 1

(14) can be rewritten as

if uj > 0
if uj <0
if uj = 0

x = g(x -u),
where

(14)

(15)

f ( if vi < 0
g(vi) = vi if 0 < vi < 1

t p if vj > 1.
From (12),

1
x= -(ey+Iu±+v)

a

Substitute (16) into (13),

-eT(ey + Iu + v) = k
a

y can be explicitly expressed by u.

y = 1 (ak - eTu - eTv)
ni

(16)

On the other hand, from projection theorem [24], it follows
that, Vu E Rn

[g(Mu+ s - u) - (Mu* +S)]T
[(Mu+ s-u) -g(Mu + s - u)] > 0.

Combining (21) and (22), we have

[g(Mu+ s-u)- (Mu* +s)]T
[u* +(Mu+s-u)-g(Muu+s-u)] > 0.

Define g := g(Mu + s - u) - (Mu + s), (23) becomes

[§+M(U_U*)IT[(U_U*) +g] < 0.
From (24), we can get

(u )u)Tg + gTM(uu*) <
_11I112 _ (u - u*)TM(u - u*).

(22)

(23)

(24)

(25)

Because the eigenvalues of MI is either 0 or 1, MI is positive
semidefinite, i.e.,

(17)

Substitute (17) into (16),

1 1T 1 1n
x = -(I--eeT)u+ -((--Z V:1i+ )e + v) (18)

a n a nl.

Based on (15, 16, 17), by projection theorem, the neural
network that can solve the original problem can be designed
as

e4du =-Mu+g(Mu-u+s)±s (19)
x =Mu+s

(u-u*)TM(u_u*) > 0.

From (25) and (26), we get

(U _u*)T±+ jTM(U_U*) < 0,

(26)

(27)

and if and only if u = u*, the equality holds.
Now choose the following radically unbounded Lyapunov

functional candidate

V(u(t)) = IIQ(u(t) - u*)It22, (28)

where Q is a symmetric and positive definite matrix with Q2 =

(I + M).

714

Authorized licensed use limited to: BROWN UNIVERSITY. Downloaded on February 24,2010 at 21:42:54 EST from IEEE Xplore.  Restrictions apply. 



Fig. 2. Architecture of the KWTA network.

Then from (27), we get
dV = (u - U*)TQ2iL

= (u - u*)T(I + M)g
= (U-U)T + gTM(U-U*)
< 0.

(29)

By the Lyapunov stability theorem, the simplified dual neural
network is globally stable. O
Remark 2: The convergence speed of the neural network is

determined by the eigenvalues of M which are independent
of n and inversely proportional to a.

Theorem 4: x* = Mu* + s is an optimal solution to
the quadratic programming problem (5), where u* is an
equilibrium point of the dynamic equation (19).

This theorem can be verified by substituting x* into the
KKT conditions (12,13,14). The three equations are satisfied,
which means that x* is the optimal solution to the quadratic
programming problem (5).
From the Theorems 3 and 4, we can conclude that the

KWTA network is globally convergent to the exact solution of
the problem (5). Further, from Theorems 1 and 2, the KWTA
network is globally convergent to the exact solution of the
KWTA operation. As a comparison, the KWTA circuit in [9]
will oscillate under some conditions.

IV. SIMULATION RESULTS
In this simulation, the inputs are vi = i (i = 1,2,--- ,5)

and k = 2. When e = 10-8 and a = 0.5, the transient
behaviors of u and v are shown in Figs. 3 and 4. In Fig.
4, the curves from bottom to top correspond respectively
vI, v2, ... , V5. It can be seen that the outputs are [0 0

-1.5 _

-2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t 10

Fig. 3. The transient behavior of u.

0 11]. The 2 largest elements are successfully selected within
1.0 x 10-7 second.

Next, consider a set of 5 sinusoidal input signals with the
following instantaneous values vp(t) = 10sin[27r(1000t -
0.257r(p - 1)J(p = 1,2,3,4) and k = 2. Fig. 5 illustrates
the 5 input signals and the transient outputs of the KWTA
network with e = 10-6 and a = 10-3. The simulation results
show that the KWTA network can effectively determine the
two largest signals from the time-varying signals in real time.
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