
1500 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 6, NOVEMBER 2006

A Simplified Dual Neural Network for Quadratic
Programming With Its KWTA Application

Shubao Liu and Jun Wang, Senior Member, IEEE

Abstract—The design, analysis, and application of a new recur-
rent neural network for quadratic programming, called simplified
dual neural network, are discussed. The analysis mainly con-
centrates on the convergence property and the computational
complexity of the neural network. The simplified dual neural
network is shown to be globally convergent to the exact optimal
solution. The complexity of the neural network architecture is
reduced with the number of neurons equal to the number of in-
equality constraints. Its application to k-winners-take-all (KWTA)
operation is discussed to demonstrate how to solve problems with
this neural network.

Index Terms—Global stability, k-winners-take-all (KWTA),
quadratic programming, recurrent neural networks.

I. INTRODUCTION

I N the past half-century, tremendous research efforts have
been put into constrained optimization, which plays an

important role in current research and development. As the
outcome, many efficient algorithms have been developed,
e.g., the simplex methods for linear programming, active set
methods, and interior point methods for nonlinear optimization.
These methods have been discussed in detail in many books,
such as [1] and [2]. Also several stochastic parallel optimiza-
tion methods, such as simulated annealing and evolutionary
algorithms, have been proposed to deal with the general global
optimization; see [3] and [4]. All these methods have been
successfully applied to parametric constrained optimization
problems. But many problems are inherently dynamic, i.e.,
the parameters of the problems are time-varying. Usually the
problems in these circumstances can be formulated as dynamic
constrained optimization problems. Many of these sample
problems in robot control, signal processing, and biomedical
engineering are described in [5]. The real-time solution require-
ment of dynamic optimization constitutes a major challenge for
the traditional parametric optimization methods.

Recurrent neural networks (RNNs) have the features of high
parallelism, adaptivity, and circuit implementability. These
characteristics can be utilized to solve dynamic constrained
optimization problems. Remarkable advances have been made
in the area of RNNs during the past twenty years, in both theory
and applications.
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This paper is concerned with recurrent neural networks for
solving dynamic convex quadratic programming problems
with equality and inequality constraints. The interest in such
problems arises from two observations. First, many engi-
neering problems can be turned to this formulation because the
two-norm or least-square optimization is a convenient choice
for both engineering plausibility and mathematical tractability.
For example, in robot motion control, the desired position may
change with time, and the obstacle may move; in wireless com-
munication, the channels change rapidly with time, because of
both natural communicating conditions (like multipath fading,
mobile terminal moving, etc.) and random asynchronous ac-
cess of other interfering users [9]. Therefore, both the motion
planning and control of kinematically redundant manipulators
and the multiuser detection of wireless communication can be
formulated as a convex quadratic optimization problem with
time-varying parameters [20], [12]. Second, in many methods,
general nonlinear programming can be solved by a series of
quadratic optimization.

In the past two decades, neural networks for optimization and
their engineering applications have been widely investigated.
Various results have been reported extensively in the literature.
Many of them have been successfully applied in engineering op-
timization. A continuous-time recurrent neural network is a dy-
namical system and its stable state is called an attractor. Dynam-
ical systems are called dissipative if their dynamics converge to
attractors. When a dissipative system has an energy (Lyapunov)
functional, the attractors are fixed points; otherwise, more com-
plex attractors may appear. Various continuous-time recurrent
neural networks have been designed for computing by utilizing
their stable states. This computing paradigm is called computing
with attractors [8]. Tank and Hopfield proposed the first working
recurrent neural network implemented on analog circuits [14],
[15], which opened the avenue of solving optimization problems
by using recurrent neural networks. Over years, various neural
network models have been developed for solving quadratic pro-
gramming problems. According to their design method, these
neural networks can be categorized as the penalty-parameter
neural network [16], the two-layer Lagrange neural network
[17], the two-layer primal-dual neural network [19], and the
one-layer dual neural network [20], [21]. It is known that the
neural network model [16] contains finite penalty parameters
and generate approximate solutions only. The dimensionality of
Lagrange network is much larger than that of original problems,
due to the introduction of slack and surplus variables. As a much
flexible tool for exactly solving quadratic programming prob-
lems, the primal-dual neural network [19], [22] was developed
with the feature that it handles the primal quadratic program and
its dual problem simultaneously by minimizing the duality gap
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using the gradient method. Unfortunately, the dynamic equa-
tions of the primal-dual neural network are usually complicated,
and may contain second-order nonlinear terms. Moreover, the
network size is usually larger than or equal to the dimension-
ality of the primal quadratic program and its dual problem. In
[20] and [21], a neural network called dual neural network is
presented to solve convex quadratic problems utilizing only the
dual variables. In this paper, we will give a new neural network
called simplified dual neural network based on dual neural net-
work for solving quadratic programs problems. It can further
reduce the architecture complexity while preserving the desired
convergence property.

The remainder of this paper is organized as follows. In
Section II, we present the simplified dual neural network for
solving convex quadratic programming problems. In Section III,
the neural network is proved to be globally stable and con-
vergent to the exact optimal solution. A numerical example is
simulated to show its convergence behavior. Its application to
k-winners-take-all (KWTA) operation is discussed in detail in
Section IV. Section V concludes this paper.

II. MODEL DESCRIPTION

A general dynamic convex quadratic optimization problem
can be expressed as

minimize

subject to (1)

where is the decision variable, ,1

. Here, if or , the in-
equality constraints are one-sided; if and

, the inequality constraints disappear. So this formulation is
general.

From now on, we simply denote as as , and
so on. Without loss of generality, we suppose is a full rank
matrix (i.e., rank ). When rank (i.e.,
rank deficient), we can find a maximum linearly independent
subset of row vectors in . These row vectors constitute a new
matrix rank with the corresponding new vector

. Then the equality constraint is equivalent to

where is a full rank matrix.
Consider (1) as the primal problem; then its dual problem is

maximize

subject to (2)

where are dual decision variables.
Define . The equality constraint in (2) becomes

1Hereafter,W (t) 2 IS means thatW (t) is symmetric and positive definite.

According to the Karush–Kuhn–Tucker (KKT) conditions for
convex optimization [2], the following set of equations has the
same solution as the primal problem (1) and its dual (2):

if
if
if

That is

(3)

(4)

(5)

where is a piecewise linear function, defined as

if
if
if

If degenerates to

if
otherwise

If degenerates to

if
otherwise

If and degenerates to a linear function

From (3), because is invertible, we can get

(6)

Substituting (6) into (4)

Because is of full rank and is invertible, is
invertible. So can be explicitly expressed by as

(7)

Based on (5)–(7), by the projection theorem, the dynamic
equation of the proposed neural network for solving the primal
problem (1) can be designed as:

• state equation

(8)

• output equation

(9)

where is the state vector and is a scaling param-
eter that controls the convergence rate of the neural network. It
can be rewritten in the more compact and explicit form as:
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Fig. 1. Block diagram of the simplified dual neural network.

TABLE I
COMPARISON OF ARCHITECTURE COMPLEXITY AMONG VARIOUS NEURAL

NETWORKS FOR QUADRATIC PROGRAMMING

• state equation

(10)

• output equation

(11)

where
. Hereafter, we will

call this neural network as the simplified dual neural network.
Because the analytic expression of can be obtained in
the design stage, the analytic expressions of and can be
computed beforehand. In view of this, it is not computationally
complex although (10) appears complicated.

By defining , (10) can be rewritten
as the following formulation similar to the Hopfield network:

where denotes the states of the neurons, is the nonlinear
activation function, and is a symmetric connection
weight matrix.

The block diagram of the neural network is shown in Fig. 1,
from which it can be observed that this is a one-layer network
model. An important criterion of measuring the performance
of recurrent neural networks is their computational complexity.
Computational complexity deals with their computational
power under constraints on resources. Here the limited re-
sources include number of neurons, number of connections,
and convergence time [7]. In the simplified dual neural network,
the number of neurons is equal to the number of inequality
constraints, whereas in the original dual neural network, the
number of neurons is equal to the number of equality and
inequality constraints [20], [21]. A complete comparison with
several neural networks for solving the quadratic program
problem (1) is shown in Table I. The convergence property is
analyzed in the next section.

III. CONVERGENCE ANALYSIS

To study the optimization capability of the simplified dual
neural network, its convergence property is first investigated.
The relationship between the equilibrium point and the optimal
solution is studied. A neural network is said to be globally con-
vergent if starting from any state, the trajectory of the state
converges to an equilibrium point. To analyze the convergence
of the simplified dual neural network, three lemmas are first
introduced.

Lemma 1 [23]: Assume that the set is a closed
convex set; then the following two inequalities hold:

where is a projection operator defined as
.

Remark 1: It is clear that the set
and satisfy the above projection property.

Lemma 2: For diag with
rank , the fol-

lowing matrix inequality holds2 :

Proof: Denote . We can find
column vectors , such that

Define

Because diag is of full rank and
rank , then are lin-

early independent vectors. Define ; then

is invertible. For , we have

2Hereafter, H � 0 means matrix H is positive semidefinite and H � 0

means matrix H is positive definite.
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Move to the left side

(12)

Because

Then

That is

(13)

From (12) and (13)

i.e.,

Lemma 3: Let rank
; then

Proof: By the matrix spectrum theorem, because
, it can be decomposed as

(14)

where diag with
as eigenvalues of and is an orthogonal matrix. Then, take
the inverse of both side of (14)

(15)

Define , by Lemma 2

, so

Furthermore

(16)

In view of (15), (16) is equivalent to

Then

Theorem 1: The simplified dual neural network (10) is stable
in the sense of Lyapunov and globally convergent to an equilib-
rium point .

Proof: At , we have the following:

(17)

where . This inequality can be
obtained by considering the following three cases.

• If for some ,
then .

• If for some and
, then and thus

.
• If for some and

, then and thus
.

Therefore, by substituting , we can
get from (17) that

(18)

On the other hand, from Lemma 1, it follows that

(19)

Combining (18) and (19), we have

(20)

Defining , (20)
becomes

(21)

From (21), we can get

(22)

According to Lemma 3, is positive semidefinite, i.e.,

(23)

From (22) and (23), we get

(24)

and if and only if , the equality holds.
Now choose the following radially unbounded Lyapunov

functional candidate:

(25)
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where is a symmetric and positive definite matrix with
.

Then from (24), we get

(26)

By the Lyapunov stability theorem, the simplified dual neural
network is globally stable.

Theorem 2: is the optimal solution of the
quadratic programming problem (1), where is an equilibrium
point of dynamic (10).

Proof: Since is an equilibrium point of the dynamic (10)

By

(27)

Define and
; then

(28)

That is

(29)

Substituting and into the expression of , we have

is invertible; then

Leaving only on the right side

i.e.,

In view of in (28), we have

(30)

Equations (27), (29), and (30) constitute the KKT conditions
(3)–(5) of (1). So is the optimal solution to
the quadratic programming problem (1).

From Theorems 1 and 2, we can conclude that the simplified
dual neural network is globally convergent to the exact optimal
solution of (1).

To show the convergence behavior of the neural network, let
us consider a numerical example

minimize

subject to

Written in the standard form, the corresponding parameters are

The simplified dual neural network for solving this quadratic
programming problem needs only two neurons, whereas the
Lagrange neural network [17] needs 12 neurons, the primal-dual
neural network [19] nine neurons, and the dual neural network
[21] four neurons.

The simulation results are shown in Figs. 2–5 with .
Figs. 2 and 3 illustrate, respectively, the convergence behaviors
of variables and . From the initial state [10, 10] , the sim-
plified dual neural network converges to the optimal solution
[0, 2, 2, 2] within 10 s. The norm of the difference be-
tween the optimal solution and the neural network output value
at time instance 10 s is less than 3 10 . Figs. 4 and 5
show the state trajectories of the simplified dual neural network
converging to the optimal solution from different initial states.

In this neural network, is the state variable, is the output,
and the time-varying parameters and are the
inputs. In an electronic implementation, is electric signal,
which operates on ns s time scale, while the time-varying
parameters usually change in ms s time scale. With the two
time-scale dynamics, the neural network can solve dynamic op-
timization problems as parametric problems. This is the ratio-
nale that we can use the electronic neural network to solve dy-
namic optimization problems. There are several advantages for
this neural network compared with traditional parametric nu-
merical methods.

1) It is a parallel solution, compared with traditional methods.
With the parallelizable ability, it can tackle large-scale
problems.

2) With the global convergence property, the neural network
solution is convergent to the optimal solution no matter
how the inputs change.

3) It can be implemented by electronic circuits, which means
that the neural network can tackle practical problems di-
rectly with high speed to ensure online operations and pro-
duce continuous outputs.

IV. KWTA APPLICATION

In this section, an application of the simplified dual neural
network for the KWTA operation is described. The KWTA op-
eration is first converted to an equivalent constrained quadratic
optimization problem. Then the simplified dual neural network
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Fig. 2. Transient behaviors of u.

Fig. 3. Transient behaviors of x.

is tailored to a KWTA network. The network has good scala-
bility performance with nodes and interconnections.
Simulation results are presented to show the effectiveness and
performance of the KWTA network.

Winner-take-all (WTA) is an operation that identifies the
largest value from the input signals. Such an operation has
numerous applications including associative memories [25],
cooperative models of binocular stereo [26], Fukushima’s
neocogniton for feature extraction, etc. [27]. In the combinato-
rial optimization, this operation is also needed.

As an extension of winner-take-all operation, KWTA selects
the largest inputs from total inputs. It can be considered as a
generalized version of winner-take-all operation. It has recently
been shown that KWTA is computationally powerful compared
with standard neural network models with threshold logic
gates [28], [29]. Any boolean function can be computed by a

Fig. 4. Trajectories of x and x from different initial states.

Fig. 5. Trajectories of x and x from different initial states.

single KWTA unit applied to weighted sums of input variables.
Besides the applications in neural network model, the KWTA
operation has important applications in machine learning,
such as k-neighborhood classification, k-means clustering, etc.
There have been many attempts to design VLSI circuits to do
the KWTA operation [28]–[35].

A. Equivalent Reformulation

Mathematically, KWTA can be formulated as a function

if largest elements of
otherwise.

(31)

Fig. 6 shows the KWTA operation graphically.
To derive the equivalent formulation suitable for recurrent

neural network design, two theorems are first given and proved.
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Fig. 6. Diagram of KWTA operation.

Theorem 3: The solution to the following discrete quadratic
programming problem (32) is the same as the solution of (31):

minimize

subject to

(32)

where is a positive constant,
.

Proof: can be written as

(33)

Because , we have

(34)

From (33) and (34), we get

That is to say

is a constant.
So the cost function can be rewritten as

maximize

Suppose that the solution of (32) is not the solution of (31).
Without loss of generality, we assume that with in the
top largest inputs and , with not in the top largest
inputs. Because is in the top th largest inputs, whereas is
not

where the equality holds if and only if the th and ( 1)st
largest inputs are equal, and .) Define

; then also
satisfies the constraints

This contradicts with the assumption that is the solution of
(32).

Denote the th largest element as and the ( 1)st largest
element as . Then we have the following theorem.

Theorem 4: If , then the following continuous
quadratic programming problem (35) and the discrete quadratic
programming problem (32) have the same solution:

minimize

subject to

(35)

where is a positive constant.
Proof: If we can show that the solution of the problem (35)

is in the set , then the theorem is proved.
From the equality constraint , we can get

(36)

Substituting (36) into , we have
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Fig. 7. Block diagram of the KWTA network.

From the previous derivation, we can take as the
function of variable . It can be further written as

(37)

where has nothing to do with and .
If the following condition is satisfied, can only

reach its minimum at its boundary, that is, or :

Considering , the above condition is
equivalent to

(38)

If largest elements of inputs , then we can choose
largest elements of inputs . To let and ,

the following conditions should be satisfied:

and

We can get

If largest elements of inputs , we can choose
largest elements of inputs . In the same way, we can get

This means that, if , the solution of (35) is in
the set 0, 1 .

From Theorems 3 and 4, we can easily see that if
, the solution to the continuous quadratic

optimization problem (35) is the solution of (31).
Remark 2: Let us consider the solution of (35) when

. In this case

Then, when

the cost function reaches its minimum. That is

(39)

If other elements can be successfully separated, then

(40)

From (39) and (40), we can get

In particular, if .
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Fig. 8. Transient behavior of u of the KWTA network in Example 1.

Fig. 9. Transient behavior of x of the KWTA network in Example 1.

B. KWTA Network Design

Based on the neural network (8) for solving quadratic pro-
gramming (1) and the equivalent formulation (35) of KWTA
operation, the KWTA network can be design as follows.

The KKT conditions of optimization problem (35) are

(41)

(42)

(43)

where

if
if
if

From (41)

(44)

Fig. 10. Convergence behavior of the KWTA network with respect to different
a in Example 1.

Substituting (44) into (42)

Then, can be explicitly expressed by

(45)

Substituting (45) into (44)

(46)

where .
Then based on (43) and (46), the KWTA network can be de-

signed as

(47)

Because and are special square matrices with all
the elements are identical except the diagonal ones, the above
KWTA network can be implemented with 2 interconnections
through utilizing a summator as shown in Fig. 7, which shows
the architecture of the KWTA network. From the network model
(47) and the architecture shown in Fig. 7, we can see that there
are neurons with 2 interconnections, where is the number
of inputs. This is in contract with most recurrent neural network,
which is of full connectivity. From the scalability view-
point, this means it can scale up easily to deal with large-scale
applications in real implementation.

From the convergence study of the simplified dual neural net-
work, we can get the result that the KWTA network is also glob-
ally Lyapunov stable and globally convergent to the solution
of KWTA operation with resolution 2 . Moreover, because the
convergence speed of the KWTA network is dominated by the
linear term of (47) (i.e., eigenvalues of ), which is indepen-
dent of the number of inputs , the convergence speed is inde-
pendent of the problem scale. In addition, the eigenvalues of
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Fig. 11. Convergence behavior of the KWTA network with respect to different
n in Example 1.

Fig. 12. Inputs and outputs of the KWTA network in Example 2.

are inversely proportional to , so the convergence speed is also
inversely proportional to .

C. Simulation Results

Example 1: First, a static KWTA problem is tested. The in-
puts are , and . When

and , the transient behaviors of and are
shown in Figs. 8 and 9. In Fig. 9, the curves from bottom to top
correspond, respectively, . It can be seen that the
steady outputs are . The two largest elements are

successfully selected within 5 10 s. In Figs. 10 and 11, the
relationship between the network’s convergence rate and its pa-
rameters is shown with the first state variable . In Fig. 10, it
can be observed that when the parameter increases exponen-
tially, the convergence time also increases exponentially (note
that the horizontal axis is in log scale). On the contrary, the con-
vergence rate remains steady with respect to the changing of
problem scale , which can be observed in Fig. 11.

Example 2: Next, consider a set of four sinusoidal
input signals with the following instantaneous values:

and . In this case, the inputs are time-varying and
the corresponding quadratic optimization problem is also
time-varying. Fig. 12 illustrates the five input signals and
the transient outputs of the KWTA network with
and . The simulation results show that the KWTA
network can effectively determine the two largest signals from
the time-varying signals in real time.

V. CONCLUDING REMARKS

A simplified dual neural network is developed for solving
strictly convex quadratic optimization problems with both
equality and inequality constraints. The neural network is
shown to be globally convergent to the optimal solutions. Com-
pared with existing neural networks for optimization, the neural
network has lower architecture complexity. An equivalent
quadratic optimization formulation for the KWTA operation is
given. Based on the simplified dual neural network, a KWTA
network is designed and simulated. The designed KWTA
network has good scalability performance. It has neurons
and 2 connections, and its convergence rate is independent of
problem scale.
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